{"title":"模拟组织膜在肩袖修复中肌腱-骨界面愈合增强的应用。","authors":"Yuwei Zhu, Bingyang Dai, Shian Zhang, Jun Liu, Shunxiang Xu, Weiyang Liu, Xin Chen, Haozhi Zhang, Quan Li, Florence Ou-Suet Pang, Weiguo Li, Chunyi Wen, Ling Qin, Jiankun Xu, To Ngai","doi":"10.1002/adma.202407358","DOIUrl":null,"url":null,"abstract":"<p>The globally prevalent rotator cuff tear has a high re-rupture rate, attributing to the failure to reproduce the interfacial fibrocartilaginous enthesis. Herein, a hierarchically organized membrane is developed that mimics the heterogeneous anatomy and properties of the natural enthesis and finely facilitates the reconstruction of tendon–bone interface. A biphasic membrane consisting of a microporous layer and a mineralized fibrous layer is constructed through the non-solvent induced phase separation (NIPS) strategy followed by a co-axial electrospinning procedure. Cationic kartogenin (KGN)-conjugated nanogel (nGel-KGN) and osteo-promotive struvite are incorporated within the membranes in a region-specific manner. During in vivo repair, the nGel-KGN-functionalized microporous layer is adjacent to the tendon which intends to suppress scar tissue formation at the lesion and simultaneously heightens chondrogenesis. Meanwhile, the struvite-containing fibrous layer covers the tubercula minus to enhance stem cell aggregation and bony ingrowth. Such tissue-specific features and spatiotemporal release behaviors contribute to effective guidance of specific defect-healing events at the transitional region, further leading to the remarkably promoted regenerative outcome in terms of the fibrocartilaginous tissue formation, collagen fiber alignment, and optimized functional motion of rotator cuff. These findings render a novel biomimetic membrane as a promising material for clinical rotator cuff repair.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 10","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202407358","citationCount":"0","resultStr":"{\"title\":\"Tissue Mimetic Membranes for Healing Augmentation of Tendon–Bone Interface in Rotator Cuff Repair\",\"authors\":\"Yuwei Zhu, Bingyang Dai, Shian Zhang, Jun Liu, Shunxiang Xu, Weiyang Liu, Xin Chen, Haozhi Zhang, Quan Li, Florence Ou-Suet Pang, Weiguo Li, Chunyi Wen, Ling Qin, Jiankun Xu, To Ngai\",\"doi\":\"10.1002/adma.202407358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The globally prevalent rotator cuff tear has a high re-rupture rate, attributing to the failure to reproduce the interfacial fibrocartilaginous enthesis. Herein, a hierarchically organized membrane is developed that mimics the heterogeneous anatomy and properties of the natural enthesis and finely facilitates the reconstruction of tendon–bone interface. A biphasic membrane consisting of a microporous layer and a mineralized fibrous layer is constructed through the non-solvent induced phase separation (NIPS) strategy followed by a co-axial electrospinning procedure. Cationic kartogenin (KGN)-conjugated nanogel (nGel-KGN) and osteo-promotive struvite are incorporated within the membranes in a region-specific manner. During in vivo repair, the nGel-KGN-functionalized microporous layer is adjacent to the tendon which intends to suppress scar tissue formation at the lesion and simultaneously heightens chondrogenesis. Meanwhile, the struvite-containing fibrous layer covers the tubercula minus to enhance stem cell aggregation and bony ingrowth. Such tissue-specific features and spatiotemporal release behaviors contribute to effective guidance of specific defect-healing events at the transitional region, further leading to the remarkably promoted regenerative outcome in terms of the fibrocartilaginous tissue formation, collagen fiber alignment, and optimized functional motion of rotator cuff. These findings render a novel biomimetic membrane as a promising material for clinical rotator cuff repair.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 10\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202407358\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202407358\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202407358","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Tissue Mimetic Membranes for Healing Augmentation of Tendon–Bone Interface in Rotator Cuff Repair
The globally prevalent rotator cuff tear has a high re-rupture rate, attributing to the failure to reproduce the interfacial fibrocartilaginous enthesis. Herein, a hierarchically organized membrane is developed that mimics the heterogeneous anatomy and properties of the natural enthesis and finely facilitates the reconstruction of tendon–bone interface. A biphasic membrane consisting of a microporous layer and a mineralized fibrous layer is constructed through the non-solvent induced phase separation (NIPS) strategy followed by a co-axial electrospinning procedure. Cationic kartogenin (KGN)-conjugated nanogel (nGel-KGN) and osteo-promotive struvite are incorporated within the membranes in a region-specific manner. During in vivo repair, the nGel-KGN-functionalized microporous layer is adjacent to the tendon which intends to suppress scar tissue formation at the lesion and simultaneously heightens chondrogenesis. Meanwhile, the struvite-containing fibrous layer covers the tubercula minus to enhance stem cell aggregation and bony ingrowth. Such tissue-specific features and spatiotemporal release behaviors contribute to effective guidance of specific defect-healing events at the transitional region, further leading to the remarkably promoted regenerative outcome in terms of the fibrocartilaginous tissue formation, collagen fiber alignment, and optimized functional motion of rotator cuff. These findings render a novel biomimetic membrane as a promising material for clinical rotator cuff repair.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.