模拟组织膜在肩袖修复中肌腱-骨界面愈合增强的应用。

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuwei Zhu, Bingyang Dai, Shian Zhang, Jun Liu, Shunxiang Xu, Weiyang Liu, Xin Chen, Haozhi Zhang, Quan Li, Florence Ou-Suet Pang, Weiguo Li, Chunyi Wen, Ling Qin, Jiankun Xu, To Ngai
{"title":"模拟组织膜在肩袖修复中肌腱-骨界面愈合增强的应用。","authors":"Yuwei Zhu,&nbsp;Bingyang Dai,&nbsp;Shian Zhang,&nbsp;Jun Liu,&nbsp;Shunxiang Xu,&nbsp;Weiyang Liu,&nbsp;Xin Chen,&nbsp;Haozhi Zhang,&nbsp;Quan Li,&nbsp;Florence Ou-Suet Pang,&nbsp;Weiguo Li,&nbsp;Chunyi Wen,&nbsp;Ling Qin,&nbsp;Jiankun Xu,&nbsp;To Ngai","doi":"10.1002/adma.202407358","DOIUrl":null,"url":null,"abstract":"<p>The globally prevalent rotator cuff tear has a high re-rupture rate, attributing to the failure to reproduce the interfacial fibrocartilaginous enthesis. Herein, a hierarchically organized membrane is developed that mimics the heterogeneous anatomy and properties of the natural enthesis and finely facilitates the reconstruction of tendon–bone interface. A biphasic membrane consisting of a microporous layer and a mineralized fibrous layer is constructed through the non-solvent induced phase separation (NIPS) strategy followed by a co-axial electrospinning procedure. Cationic kartogenin (KGN)-conjugated nanogel (nGel-KGN) and osteo-promotive struvite are incorporated within the membranes in a region-specific manner. During in vivo repair, the nGel-KGN-functionalized microporous layer is adjacent to the tendon which intends to suppress scar tissue formation at the lesion and simultaneously heightens chondrogenesis. Meanwhile, the struvite-containing fibrous layer covers the tubercula minus to enhance stem cell aggregation and bony ingrowth. Such tissue-specific features and spatiotemporal release behaviors contribute to effective guidance of specific defect-healing events at the transitional region, further leading to the remarkably promoted regenerative outcome in terms of the fibrocartilaginous tissue formation, collagen fiber alignment, and optimized functional motion of rotator cuff. These findings render a novel biomimetic membrane as a promising material for clinical rotator cuff repair.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 10","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202407358","citationCount":"0","resultStr":"{\"title\":\"Tissue Mimetic Membranes for Healing Augmentation of Tendon–Bone Interface in Rotator Cuff Repair\",\"authors\":\"Yuwei Zhu,&nbsp;Bingyang Dai,&nbsp;Shian Zhang,&nbsp;Jun Liu,&nbsp;Shunxiang Xu,&nbsp;Weiyang Liu,&nbsp;Xin Chen,&nbsp;Haozhi Zhang,&nbsp;Quan Li,&nbsp;Florence Ou-Suet Pang,&nbsp;Weiguo Li,&nbsp;Chunyi Wen,&nbsp;Ling Qin,&nbsp;Jiankun Xu,&nbsp;To Ngai\",\"doi\":\"10.1002/adma.202407358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The globally prevalent rotator cuff tear has a high re-rupture rate, attributing to the failure to reproduce the interfacial fibrocartilaginous enthesis. Herein, a hierarchically organized membrane is developed that mimics the heterogeneous anatomy and properties of the natural enthesis and finely facilitates the reconstruction of tendon–bone interface. A biphasic membrane consisting of a microporous layer and a mineralized fibrous layer is constructed through the non-solvent induced phase separation (NIPS) strategy followed by a co-axial electrospinning procedure. Cationic kartogenin (KGN)-conjugated nanogel (nGel-KGN) and osteo-promotive struvite are incorporated within the membranes in a region-specific manner. During in vivo repair, the nGel-KGN-functionalized microporous layer is adjacent to the tendon which intends to suppress scar tissue formation at the lesion and simultaneously heightens chondrogenesis. Meanwhile, the struvite-containing fibrous layer covers the tubercula minus to enhance stem cell aggregation and bony ingrowth. Such tissue-specific features and spatiotemporal release behaviors contribute to effective guidance of specific defect-healing events at the transitional region, further leading to the remarkably promoted regenerative outcome in terms of the fibrocartilaginous tissue formation, collagen fiber alignment, and optimized functional motion of rotator cuff. These findings render a novel biomimetic membrane as a promising material for clinical rotator cuff repair.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 10\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202407358\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202407358\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202407358","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

全球普遍存在的肩袖撕裂有很高的再破裂率,这是由于无法复制界面纤维软骨内端。在这里,一种分层组织的膜被开发出来,它模仿了自然内固定的异质解剖结构和特性,并精细地促进了肌腱-骨界面的重建。采用非溶剂诱导相分离(NIPS)策略和同轴静电纺丝工艺制备了由微孔层和矿化纤维层组成的双相膜。阳离子kartogenin (KGN)共轭纳米凝胶(nGel-KGN)和促骨鸟粪石以特定区域的方式结合在膜内。在体内修复过程中,ngel - kgn功能化的微孔层靠近肌腱,旨在抑制病变处瘢痕组织的形成,同时促进软骨形成。同时,含有鸟粪石的纤维层覆盖在结核负表面,促进干细胞聚集和骨长入。这种组织特异性特征和时空释放行为有助于有效地指导过渡区特异性缺陷愈合事件,从而在纤维软骨组织形成、胶原纤维排列和优化肩袖功能运动方面显著促进再生结果。这些发现使一种新型仿生膜成为临床肩袖修复的一种很有前途的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tissue Mimetic Membranes for Healing Augmentation of Tendon–Bone Interface in Rotator Cuff Repair

Tissue Mimetic Membranes for Healing Augmentation of Tendon–Bone Interface in Rotator Cuff Repair

Tissue Mimetic Membranes for Healing Augmentation of Tendon–Bone Interface in Rotator Cuff Repair

The globally prevalent rotator cuff tear has a high re-rupture rate, attributing to the failure to reproduce the interfacial fibrocartilaginous enthesis. Herein, a hierarchically organized membrane is developed that mimics the heterogeneous anatomy and properties of the natural enthesis and finely facilitates the reconstruction of tendon–bone interface. A biphasic membrane consisting of a microporous layer and a mineralized fibrous layer is constructed through the non-solvent induced phase separation (NIPS) strategy followed by a co-axial electrospinning procedure. Cationic kartogenin (KGN)-conjugated nanogel (nGel-KGN) and osteo-promotive struvite are incorporated within the membranes in a region-specific manner. During in vivo repair, the nGel-KGN-functionalized microporous layer is adjacent to the tendon which intends to suppress scar tissue formation at the lesion and simultaneously heightens chondrogenesis. Meanwhile, the struvite-containing fibrous layer covers the tubercula minus to enhance stem cell aggregation and bony ingrowth. Such tissue-specific features and spatiotemporal release behaviors contribute to effective guidance of specific defect-healing events at the transitional region, further leading to the remarkably promoted regenerative outcome in terms of the fibrocartilaginous tissue formation, collagen fiber alignment, and optimized functional motion of rotator cuff. These findings render a novel biomimetic membrane as a promising material for clinical rotator cuff repair.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信