苍白球的尖峰模式突出了不同遗传性肌张力障碍综合征的收敛神经动力学。

IF 8.1 1区 医学 Q1 CLINICAL NEUROLOGY
Ahmet Kaymak PhD, Fabiana Colucci MD, PhD, Mahboubeh Ahmadipour PhD, Nico Golfrè Andreasi MD, Sara Rinaldo Tch, Zvi Israel MD, David Arkadir MD, PhD, Roberta Telese MD, Vincenzo Levi MD, Giovanna Zorzi MD, Jacopo Carpaneto PhD, Miryam Carecchio MD, PhD, Holger Prokisch PhD, Michael Zech MD, PhD, Barbara Garavaglia PhD, Hagai Bergman MD, PhD, Roberto Eleopra MD, Alberto Mazzoni PhD, Luigi M. Romito MD, PhD
{"title":"苍白球的尖峰模式突出了不同遗传性肌张力障碍综合征的收敛神经动力学。","authors":"Ahmet Kaymak PhD,&nbsp;Fabiana Colucci MD, PhD,&nbsp;Mahboubeh Ahmadipour PhD,&nbsp;Nico Golfrè Andreasi MD,&nbsp;Sara Rinaldo Tch,&nbsp;Zvi Israel MD,&nbsp;David Arkadir MD, PhD,&nbsp;Roberta Telese MD,&nbsp;Vincenzo Levi MD,&nbsp;Giovanna Zorzi MD,&nbsp;Jacopo Carpaneto PhD,&nbsp;Miryam Carecchio MD, PhD,&nbsp;Holger Prokisch PhD,&nbsp;Michael Zech MD, PhD,&nbsp;Barbara Garavaglia PhD,&nbsp;Hagai Bergman MD, PhD,&nbsp;Roberto Eleopra MD,&nbsp;Alberto Mazzoni PhD,&nbsp;Luigi M. Romito MD, PhD","doi":"10.1002/ana.27185","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <h3> Objective</h3>\n \n <p>Genetic dystonia is a complex movement disorder with diverse clinical manifestations resulting from pathogenic mutations in associated genes. A recent paradigm shift emphasizes the functional convergence among dystonia genes, hinting at a shared pathomechanism. However, the neural dynamics supporting this convergence remain largely unexplored.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Herein, we analyzed microelectrode recordings acquired during pallidal deep brain stimulation surgery from 31 dystonia patients with pathogenic mutations in the <i>AOPEP</i>, <i>GNAL</i>, <i>KMT2B</i>, <i>PANK2</i>, <i>PLA2G6</i>, <i>SGCE</i>, <i>THAP1</i>, <i>TOR1A</i>, and <i>VPS16</i> genes. We identified 1,694 single units whose activity was characterized by a broad set of neural features.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p><i>AOPEP</i>, <i>PANK2</i>, and <i>THAP1</i> displayed higher firing regularity, whereas <i>GNAL</i>, <i>PLA2G6</i>, <i>KMT2B</i>, and <i>SGCE</i> shared a large fraction of bursting neurons (&gt; 26.6%), significantly exceeding the rate in other genes. <i>TOR1A</i> and <i>VPS16</i> genes constituted an intermediate group, bridging these 2 groups, due to having the highest degree of spiking irregularity. Hierarchical clustering algorithms based on these dynamics confirmed the results obtained with first-order comparisons.</p>\n </section>\n \n <section>\n \n <h3> Interpretation</h3>\n \n <p>Despite lacking common molecular pathways, dystonia genes share largely overlapping structures of neural patterns, in particular the degree of pallidal spiking regularity and bursting activity. We propose that the degree of desynchronization facilitated by pallidal neural bursts may explain the variability in deep brain stimulation (DBS) of the globus pallidus internus (GPi) surgery outcomes across genetic dystonia syndromes. Lastly, investigating the effects of genetic mutations on low-frequency pallidal activity could optimize personalized adaptive DBS treatments in patients with genetic dystonia. ANN NEUROL 2025;97:826–844</p>\n </section>\n </div>","PeriodicalId":127,"journal":{"name":"Annals of Neurology","volume":"97 5","pages":"826-844"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ana.27185","citationCount":"0","resultStr":"{\"title\":\"Spiking Patterns in the Globus Pallidus Highlight Convergent Neural Dynamics across Diverse Genetic Dystonia Syndromes\",\"authors\":\"Ahmet Kaymak PhD,&nbsp;Fabiana Colucci MD, PhD,&nbsp;Mahboubeh Ahmadipour PhD,&nbsp;Nico Golfrè Andreasi MD,&nbsp;Sara Rinaldo Tch,&nbsp;Zvi Israel MD,&nbsp;David Arkadir MD, PhD,&nbsp;Roberta Telese MD,&nbsp;Vincenzo Levi MD,&nbsp;Giovanna Zorzi MD,&nbsp;Jacopo Carpaneto PhD,&nbsp;Miryam Carecchio MD, PhD,&nbsp;Holger Prokisch PhD,&nbsp;Michael Zech MD, PhD,&nbsp;Barbara Garavaglia PhD,&nbsp;Hagai Bergman MD, PhD,&nbsp;Roberto Eleopra MD,&nbsp;Alberto Mazzoni PhD,&nbsp;Luigi M. Romito MD, PhD\",\"doi\":\"10.1002/ana.27185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>Genetic dystonia is a complex movement disorder with diverse clinical manifestations resulting from pathogenic mutations in associated genes. A recent paradigm shift emphasizes the functional convergence among dystonia genes, hinting at a shared pathomechanism. However, the neural dynamics supporting this convergence remain largely unexplored.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Herein, we analyzed microelectrode recordings acquired during pallidal deep brain stimulation surgery from 31 dystonia patients with pathogenic mutations in the <i>AOPEP</i>, <i>GNAL</i>, <i>KMT2B</i>, <i>PANK2</i>, <i>PLA2G6</i>, <i>SGCE</i>, <i>THAP1</i>, <i>TOR1A</i>, and <i>VPS16</i> genes. We identified 1,694 single units whose activity was characterized by a broad set of neural features.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p><i>AOPEP</i>, <i>PANK2</i>, and <i>THAP1</i> displayed higher firing regularity, whereas <i>GNAL</i>, <i>PLA2G6</i>, <i>KMT2B</i>, and <i>SGCE</i> shared a large fraction of bursting neurons (&gt; 26.6%), significantly exceeding the rate in other genes. <i>TOR1A</i> and <i>VPS16</i> genes constituted an intermediate group, bridging these 2 groups, due to having the highest degree of spiking irregularity. Hierarchical clustering algorithms based on these dynamics confirmed the results obtained with first-order comparisons.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Interpretation</h3>\\n \\n <p>Despite lacking common molecular pathways, dystonia genes share largely overlapping structures of neural patterns, in particular the degree of pallidal spiking regularity and bursting activity. We propose that the degree of desynchronization facilitated by pallidal neural bursts may explain the variability in deep brain stimulation (DBS) of the globus pallidus internus (GPi) surgery outcomes across genetic dystonia syndromes. Lastly, investigating the effects of genetic mutations on low-frequency pallidal activity could optimize personalized adaptive DBS treatments in patients with genetic dystonia. ANN NEUROL 2025;97:826–844</p>\\n </section>\\n </div>\",\"PeriodicalId\":127,\"journal\":{\"name\":\"Annals of Neurology\",\"volume\":\"97 5\",\"pages\":\"826-844\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ana.27185\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ana.27185\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Neurology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ana.27185","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:遗传性肌张力障碍是由相关基因的致病性突变引起的具有多种临床表现的复杂运动障碍。最近的一个范式转变强调肌张力障碍基因之间的功能趋同,暗示了一个共同的病理机制。然而,支持这种融合的神经动力学在很大程度上仍未被探索。方法:在此,我们分析了31例AOPEP、GNAL、KMT2B、PANK2、PLA2G6、SGCE、THAP1、TOR1A和VPS16基因致病性突变的肌张力障碍患者在pallial深部脑刺激手术中获得的微电极记录。我们确定了1,694个单个单元,其活动具有广泛的神经特征。结果:AOPEP、PANK2和THAP1表现出更高的放电规律性,而GNAL、PLA2G6、KMT2B和SGCE共享大量的破裂神经元(> 26.6%),显著高于其他基因。TOR1A和VPS16基因由于穗型不规则程度最高,构成了一个中间组,连接了这两个组。基于这些动态的分层聚类算法证实了一阶比较的结果。解释:尽管缺乏共同的分子通路,肌张力障碍基因在很大程度上共享重叠的神经模式结构,特别是在白斑尖峰规律和爆发活动的程度上。我们提出,白球神经爆发促进的非同步化程度可能解释了遗传性肌张力障碍综合征中白球内(GPi)深部脑刺激(DBS)手术结果的可变性。最后,研究基因突变对低频苍白质活动的影响,可以优化遗传性肌张力障碍患者的个性化适应性DBS治疗。Ann neurol 2025。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spiking Patterns in the Globus Pallidus Highlight Convergent Neural Dynamics across Diverse Genetic Dystonia Syndromes

Spiking Patterns in the Globus Pallidus Highlight Convergent Neural Dynamics across Diverse Genetic Dystonia Syndromes

Objective

Genetic dystonia is a complex movement disorder with diverse clinical manifestations resulting from pathogenic mutations in associated genes. A recent paradigm shift emphasizes the functional convergence among dystonia genes, hinting at a shared pathomechanism. However, the neural dynamics supporting this convergence remain largely unexplored.

Methods

Herein, we analyzed microelectrode recordings acquired during pallidal deep brain stimulation surgery from 31 dystonia patients with pathogenic mutations in the AOPEP, GNAL, KMT2B, PANK2, PLA2G6, SGCE, THAP1, TOR1A, and VPS16 genes. We identified 1,694 single units whose activity was characterized by a broad set of neural features.

Results

AOPEP, PANK2, and THAP1 displayed higher firing regularity, whereas GNAL, PLA2G6, KMT2B, and SGCE shared a large fraction of bursting neurons (> 26.6%), significantly exceeding the rate in other genes. TOR1A and VPS16 genes constituted an intermediate group, bridging these 2 groups, due to having the highest degree of spiking irregularity. Hierarchical clustering algorithms based on these dynamics confirmed the results obtained with first-order comparisons.

Interpretation

Despite lacking common molecular pathways, dystonia genes share largely overlapping structures of neural patterns, in particular the degree of pallidal spiking regularity and bursting activity. We propose that the degree of desynchronization facilitated by pallidal neural bursts may explain the variability in deep brain stimulation (DBS) of the globus pallidus internus (GPi) surgery outcomes across genetic dystonia syndromes. Lastly, investigating the effects of genetic mutations on low-frequency pallidal activity could optimize personalized adaptive DBS treatments in patients with genetic dystonia. ANN NEUROL 2025;97:826–844

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Neurology
Annals of Neurology 医学-临床神经学
CiteScore
18.00
自引率
1.80%
发文量
270
审稿时长
3-8 weeks
期刊介绍: Annals of Neurology publishes original articles with potential for high impact in understanding the pathogenesis, clinical and laboratory features, diagnosis, treatment, outcomes and science underlying diseases of the human nervous system. Articles should ideally be of broad interest to the academic neurological community rather than solely to subspecialists in a particular field. Studies involving experimental model system, including those in cell and organ cultures and animals, of direct translational relevance to the understanding of neurological disease are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信