{"title":"羰基中间体催化的炔烃不对称转化。","authors":"Rui Wu, Zurong Xu, Dong Zhu, Shifa Zhu","doi":"10.1021/acs.accounts.4c00715","DOIUrl":null,"url":null,"abstract":"<p><p>ConspectusFunctionalization of alkynes is an established cornerstone of organic synthesis. While numerous transition metals exhibit promising activities in the transformations of alkynes via π-insertion or oxidative cyclometalation, Lewis π-acids offer a different approach. By coordinating with alkynes through π-bonding, Lewis π-acids facilitate nucleophilic addition, leading to the formation of alkenyl metal species. These species can undergo electron rearrangement to generate metal carbenes, which are crucial intermediates for subsequent carbene transfer reactions. This reaction pathway provides a versatile route for alkyne functionalization, especially in an asymmetric manner. Although the Lewis π-acid, gold(I), pioneered this reaction mode, the development of asymmetric variants remains challenging due to the linear coordination of gold(I). Therefore, expanding the range of catalysts beyond gold(I) complexes to other metal catalysts would facilitate further advances in chiral molecule construction and the exploration of novel reaction modes.In this Account, we present a concise review of alkyne multifunctionalization via dirhodium-catalyzed asymmetric transformations, providing the development of the modulation strategies and substrates and plausible reaction mechanisms. In the aromatization-driven strategy, the furanyl dirhodium carbene is generated from an enynone, which is terminated by enantioselective intramolecular C-H insertion, cyclopropanation, aromatic substitution, or the Büchner reaction, giving chiral dihydroindoles, dihydrobenzofurans, cyclopropane-fused tetrahydroquinolines, fluorenes, or cyclohepta[<i>b</i>]benzofurans. The cap-tether modulation strategy was developed in a subsequent study to balance the reactivity and selectivity of an azo-enyne. This strategy gave the first catalytic asymmetric cycloisomerization of azo-enyne, affording centrally and axially chiral isoindazole derivatives. The synergistic activation strategy, i.e., EWG activation and C-H···O interaction, was introduced to achieve the first dirhodium-catalyzed asymmetric cycloisomerization of enynes, providing a range of chiral cyclopropane-annulated bicyclic systems from enynals. Benefiting from these successes, difluoromethyl-substituted enynes were designed and proven to be effective substrates. With the corresponding benzo-1,6-enynes as the substrates, the enantioselective biscyclopropanation and the cascaded cyclopropanation/cyclopropenation were achieved using alkynes as dicarbene equivalents. Additionally, benzo-1,5-enynal generated vinyl dirhodium carbene, which reacted with a variety of alkenes via [2 + 1] cycloaddition, [4 + 3] cycloaddition, or formal allylation, giving spiro and fused polycyclic heterocycles. Coupling the synergistic activation strategy with desymmetrization, we further successfully achieved the asymmetric cycloisomerization of diynals, constructing furan-fused dihydropiperidines with an alkyne-substituted aza-quaternary stereocenter. Notably, by analyzing X-ray structures of several dirhodium-alkyne π-complexes, together with the results of DFT calculations and control experiments, we obtained evidence supporting the synergistic activation mode, making the well-defined paddlewheel-like dirhodium(II) stand out among the other metal complexes. We anticipate that our research will significantly advance the fields of dirhodium, alkyne, and carbene chemistry.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"799-811"},"PeriodicalIF":16.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dirhodium-Catalyzed Asymmetric Transformations of Alkynes via Carbene Intermediates.\",\"authors\":\"Rui Wu, Zurong Xu, Dong Zhu, Shifa Zhu\",\"doi\":\"10.1021/acs.accounts.4c00715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ConspectusFunctionalization of alkynes is an established cornerstone of organic synthesis. While numerous transition metals exhibit promising activities in the transformations of alkynes via π-insertion or oxidative cyclometalation, Lewis π-acids offer a different approach. By coordinating with alkynes through π-bonding, Lewis π-acids facilitate nucleophilic addition, leading to the formation of alkenyl metal species. These species can undergo electron rearrangement to generate metal carbenes, which are crucial intermediates for subsequent carbene transfer reactions. This reaction pathway provides a versatile route for alkyne functionalization, especially in an asymmetric manner. Although the Lewis π-acid, gold(I), pioneered this reaction mode, the development of asymmetric variants remains challenging due to the linear coordination of gold(I). Therefore, expanding the range of catalysts beyond gold(I) complexes to other metal catalysts would facilitate further advances in chiral molecule construction and the exploration of novel reaction modes.In this Account, we present a concise review of alkyne multifunctionalization via dirhodium-catalyzed asymmetric transformations, providing the development of the modulation strategies and substrates and plausible reaction mechanisms. In the aromatization-driven strategy, the furanyl dirhodium carbene is generated from an enynone, which is terminated by enantioselective intramolecular C-H insertion, cyclopropanation, aromatic substitution, or the Büchner reaction, giving chiral dihydroindoles, dihydrobenzofurans, cyclopropane-fused tetrahydroquinolines, fluorenes, or cyclohepta[<i>b</i>]benzofurans. The cap-tether modulation strategy was developed in a subsequent study to balance the reactivity and selectivity of an azo-enyne. This strategy gave the first catalytic asymmetric cycloisomerization of azo-enyne, affording centrally and axially chiral isoindazole derivatives. The synergistic activation strategy, i.e., EWG activation and C-H···O interaction, was introduced to achieve the first dirhodium-catalyzed asymmetric cycloisomerization of enynes, providing a range of chiral cyclopropane-annulated bicyclic systems from enynals. Benefiting from these successes, difluoromethyl-substituted enynes were designed and proven to be effective substrates. With the corresponding benzo-1,6-enynes as the substrates, the enantioselective biscyclopropanation and the cascaded cyclopropanation/cyclopropenation were achieved using alkynes as dicarbene equivalents. Additionally, benzo-1,5-enynal generated vinyl dirhodium carbene, which reacted with a variety of alkenes via [2 + 1] cycloaddition, [4 + 3] cycloaddition, or formal allylation, giving spiro and fused polycyclic heterocycles. Coupling the synergistic activation strategy with desymmetrization, we further successfully achieved the asymmetric cycloisomerization of diynals, constructing furan-fused dihydropiperidines with an alkyne-substituted aza-quaternary stereocenter. Notably, by analyzing X-ray structures of several dirhodium-alkyne π-complexes, together with the results of DFT calculations and control experiments, we obtained evidence supporting the synergistic activation mode, making the well-defined paddlewheel-like dirhodium(II) stand out among the other metal complexes. We anticipate that our research will significantly advance the fields of dirhodium, alkyne, and carbene chemistry.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\" \",\"pages\":\"799-811\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.accounts.4c00715\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.accounts.4c00715","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dirhodium-Catalyzed Asymmetric Transformations of Alkynes via Carbene Intermediates.
ConspectusFunctionalization of alkynes is an established cornerstone of organic synthesis. While numerous transition metals exhibit promising activities in the transformations of alkynes via π-insertion or oxidative cyclometalation, Lewis π-acids offer a different approach. By coordinating with alkynes through π-bonding, Lewis π-acids facilitate nucleophilic addition, leading to the formation of alkenyl metal species. These species can undergo electron rearrangement to generate metal carbenes, which are crucial intermediates for subsequent carbene transfer reactions. This reaction pathway provides a versatile route for alkyne functionalization, especially in an asymmetric manner. Although the Lewis π-acid, gold(I), pioneered this reaction mode, the development of asymmetric variants remains challenging due to the linear coordination of gold(I). Therefore, expanding the range of catalysts beyond gold(I) complexes to other metal catalysts would facilitate further advances in chiral molecule construction and the exploration of novel reaction modes.In this Account, we present a concise review of alkyne multifunctionalization via dirhodium-catalyzed asymmetric transformations, providing the development of the modulation strategies and substrates and plausible reaction mechanisms. In the aromatization-driven strategy, the furanyl dirhodium carbene is generated from an enynone, which is terminated by enantioselective intramolecular C-H insertion, cyclopropanation, aromatic substitution, or the Büchner reaction, giving chiral dihydroindoles, dihydrobenzofurans, cyclopropane-fused tetrahydroquinolines, fluorenes, or cyclohepta[b]benzofurans. The cap-tether modulation strategy was developed in a subsequent study to balance the reactivity and selectivity of an azo-enyne. This strategy gave the first catalytic asymmetric cycloisomerization of azo-enyne, affording centrally and axially chiral isoindazole derivatives. The synergistic activation strategy, i.e., EWG activation and C-H···O interaction, was introduced to achieve the first dirhodium-catalyzed asymmetric cycloisomerization of enynes, providing a range of chiral cyclopropane-annulated bicyclic systems from enynals. Benefiting from these successes, difluoromethyl-substituted enynes were designed and proven to be effective substrates. With the corresponding benzo-1,6-enynes as the substrates, the enantioselective biscyclopropanation and the cascaded cyclopropanation/cyclopropenation were achieved using alkynes as dicarbene equivalents. Additionally, benzo-1,5-enynal generated vinyl dirhodium carbene, which reacted with a variety of alkenes via [2 + 1] cycloaddition, [4 + 3] cycloaddition, or formal allylation, giving spiro and fused polycyclic heterocycles. Coupling the synergistic activation strategy with desymmetrization, we further successfully achieved the asymmetric cycloisomerization of diynals, constructing furan-fused dihydropiperidines with an alkyne-substituted aza-quaternary stereocenter. Notably, by analyzing X-ray structures of several dirhodium-alkyne π-complexes, together with the results of DFT calculations and control experiments, we obtained evidence supporting the synergistic activation mode, making the well-defined paddlewheel-like dirhodium(II) stand out among the other metal complexes. We anticipate that our research will significantly advance the fields of dirhodium, alkyne, and carbene chemistry.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.