一类植物铜酶的肽交联研究。

IF 14 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Trends in Chemistry Pub Date : 2024-11-01 Epub Date: 2024-10-22 DOI:10.1016/j.trechm.2024.09.002
M Rafiul O K Noyon, Shabnam Hematian
{"title":"一类植物铜酶的肽交联研究。","authors":"M Rafiul O K Noyon, Shabnam Hematian","doi":"10.1016/j.trechm.2024.09.002","DOIUrl":null,"url":null,"abstract":"<p><p>BURP domain peptide cyclases, or BpCs (an abbreviation we recommend in this opinion), are an emerging class of copper enzymes which catalyze the oxidative macrocyclization of peptides in plants. A close examination of their novel protein fold, along with the unique dicopper active site that meticulously controls crosslinking within peptides, highlights how nature exploits intricate mechanistic strategies to achieve diverse functionalities. Here, we summarize recent discoveries regarding the sequence, structure, function, and proposed chemistry of BpCs. We also present plausible mechanistic ideas and recommend important structural considerations that could advance investigations and discussions surrounding their reactivity and underlying mechanisms.</p>","PeriodicalId":48544,"journal":{"name":"Trends in Chemistry","volume":"6 11","pages":"649-655"},"PeriodicalIF":14.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771992/pdf/","citationCount":"0","resultStr":"{\"title\":\"Peptide Crosslinking by a Class of Plant Copper Enzymes.\",\"authors\":\"M Rafiul O K Noyon, Shabnam Hematian\",\"doi\":\"10.1016/j.trechm.2024.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BURP domain peptide cyclases, or BpCs (an abbreviation we recommend in this opinion), are an emerging class of copper enzymes which catalyze the oxidative macrocyclization of peptides in plants. A close examination of their novel protein fold, along with the unique dicopper active site that meticulously controls crosslinking within peptides, highlights how nature exploits intricate mechanistic strategies to achieve diverse functionalities. Here, we summarize recent discoveries regarding the sequence, structure, function, and proposed chemistry of BpCs. We also present plausible mechanistic ideas and recommend important structural considerations that could advance investigations and discussions surrounding their reactivity and underlying mechanisms.</p>\",\"PeriodicalId\":48544,\"journal\":{\"name\":\"Trends in Chemistry\",\"volume\":\"6 11\",\"pages\":\"649-655\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771992/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.trechm.2024.09.002\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.trechm.2024.09.002","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

BURP结构域肽环化酶(简称BpCs)是一类新兴的铜酶,在植物中催化多肽的氧化大环化。仔细研究它们的新蛋白质折叠,以及独特的diccopper活性位点,精心控制多肽内的交联,突出了大自然如何利用复杂的机制策略来实现多种功能。在这里,我们总结了最近关于bpc的序列、结构、功能和化学方面的发现。我们还提出了合理的机制思想,并建议了重要的结构考虑,可以推进围绕其反应性和潜在机制的调查和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Peptide Crosslinking by a Class of Plant Copper Enzymes.

BURP domain peptide cyclases, or BpCs (an abbreviation we recommend in this opinion), are an emerging class of copper enzymes which catalyze the oxidative macrocyclization of peptides in plants. A close examination of their novel protein fold, along with the unique dicopper active site that meticulously controls crosslinking within peptides, highlights how nature exploits intricate mechanistic strategies to achieve diverse functionalities. Here, we summarize recent discoveries regarding the sequence, structure, function, and proposed chemistry of BpCs. We also present plausible mechanistic ideas and recommend important structural considerations that could advance investigations and discussions surrounding their reactivity and underlying mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Chemistry
Trends in Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
28.00
自引率
0.60%
发文量
138
期刊介绍: Trends in Chemistry serves as a new global platform for discussing significant and transformative concepts across all areas of chemistry. It recognizes that breakthroughs in chemistry hold the key to addressing major global challenges. The journal offers readable, multidisciplinary articles, including reviews, opinions, and short pieces, designed to keep both students and leading scientists updated on pressing issues in the field. Covering analytical, inorganic, organic, physical, and theoretical chemistry, the journal highlights major themes such as biochemistry, catalysis, environmental chemistry, materials, medicine, polymers, and supramolecular chemistry. It also welcomes articles on chemical education, health and safety, policy and public relations, and ethics and law.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信