Zhenying Yang, Ling Lin, Min Lu, Wentao Ma, Huaming An
{"title":"bHLH转录因子RrUNE12调节盐耐受性并促进抗坏血酸合成。","authors":"Zhenying Yang, Ling Lin, Min Lu, Wentao Ma, Huaming An","doi":"10.1007/s00299-025-03428-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>RrUNE12 binds to the RrGGP2 promoter to facilitate biosynthesis of AsA in Rosa roxburghii fruit. Furthermore, RrUNE12 upregulates antioxidant-related genes and maintains ROS homeostasis, thereby improving tolerance to salt stress. L-ascorbic acid (AsA) plays an essential role in stress defense as a major antioxidant in plant cells. GDP-L-galactose pyrophosphatase 2 (RrGGP2) has been previously identified as the key structural gene operating in AsA overproduction in Rosa roxburghii fruit. However, the transcriptional regulation of RrGGP2 in response to abiotic stress is not fully elucidated. In this study, we identified a bHLH transcription factor, RrUNE12, whose transcription level significantly correlated with RrGGP2 abundance and AsA accumulation in developing fruit. RrUNE12 is localized in the nucleus and specifically binds to the promoter of RrGGP2 to promote its transcription. The overexpression or silencing of RrUNE12 in R. roxburghii fruit and fruit callus further confirmed that RrUNE12 positively regulated RrGGP2 transcription and AsA level. Different abiotic stress treatments indicated that RrUNE12 was greatly induced by salt. Exogenous NaCl treatment on the RrUNE12-overexpressing or RrUNE12-silencing fruits also led to enhanced transcripts abundance of both RrUNE12 and RrGGP2, compared to the treatment without adding NaCl. RrUNE12 overexpression in fruit callus alleviated salt stress damage by upregulating the expression of RrGGP2 and antioxidant-related genes. Additionally, stable overexpression of RrUNE12 in tomato plants resulted in a significant increase in AsA content and antioxidant capacity, accompanied by an increased resistance to the salt stress. Collectively, the results suggest that RrUNE12 functions as an activator of AsA biosynthesis in R. roxburghii fruit and plays a positive role in mitigating salt stress by increasing both AsA level and the oxidation resistance.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 2","pages":"42"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bHLH transcription factor RrUNE12 regulates salt tolerance and promotes ascorbate synthesis.\",\"authors\":\"Zhenying Yang, Ling Lin, Min Lu, Wentao Ma, Huaming An\",\"doi\":\"10.1007/s00299-025-03428-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>RrUNE12 binds to the RrGGP2 promoter to facilitate biosynthesis of AsA in Rosa roxburghii fruit. Furthermore, RrUNE12 upregulates antioxidant-related genes and maintains ROS homeostasis, thereby improving tolerance to salt stress. L-ascorbic acid (AsA) plays an essential role in stress defense as a major antioxidant in plant cells. GDP-L-galactose pyrophosphatase 2 (RrGGP2) has been previously identified as the key structural gene operating in AsA overproduction in Rosa roxburghii fruit. However, the transcriptional regulation of RrGGP2 in response to abiotic stress is not fully elucidated. In this study, we identified a bHLH transcription factor, RrUNE12, whose transcription level significantly correlated with RrGGP2 abundance and AsA accumulation in developing fruit. RrUNE12 is localized in the nucleus and specifically binds to the promoter of RrGGP2 to promote its transcription. The overexpression or silencing of RrUNE12 in R. roxburghii fruit and fruit callus further confirmed that RrUNE12 positively regulated RrGGP2 transcription and AsA level. Different abiotic stress treatments indicated that RrUNE12 was greatly induced by salt. Exogenous NaCl treatment on the RrUNE12-overexpressing or RrUNE12-silencing fruits also led to enhanced transcripts abundance of both RrUNE12 and RrGGP2, compared to the treatment without adding NaCl. RrUNE12 overexpression in fruit callus alleviated salt stress damage by upregulating the expression of RrGGP2 and antioxidant-related genes. Additionally, stable overexpression of RrUNE12 in tomato plants resulted in a significant increase in AsA content and antioxidant capacity, accompanied by an increased resistance to the salt stress. Collectively, the results suggest that RrUNE12 functions as an activator of AsA biosynthesis in R. roxburghii fruit and plays a positive role in mitigating salt stress by increasing both AsA level and the oxidation resistance.</p>\",\"PeriodicalId\":20204,\"journal\":{\"name\":\"Plant Cell Reports\",\"volume\":\"44 2\",\"pages\":\"42\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00299-025-03428-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03428-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
关键信息:RrUNE12与RrGGP2启动子结合,促进刺梨果实AsA的生物合成。此外,RrUNE12上调抗氧化相关基因,维持ROS稳态,从而提高对盐胁迫的耐受性。l -抗坏血酸(AsA)作为植物细胞的主要抗氧化剂,在逆境防御中起着重要作用。gdp - l -半乳糖焦磷酸酶2 (RrGGP2)是在刺梨果实中AsA过量产生的关键结构基因。然而,RrGGP2在非生物胁迫下的转录调控尚不完全清楚。在本研究中,我们鉴定出bHLH转录因子RrUNE12,其转录水平与发育果实中RrGGP2丰度和AsA积累显著相关。RrUNE12定位于细胞核内,特异结合RrGGP2的启动子,促进其转录。RrUNE12在刺梨果实和果实愈伤组织中的过表达或沉默进一步证实了RrUNE12正调控RrGGP2转录和AsA水平。不同的非生物胁迫处理表明,盐对RrUNE12的诱导作用较大。在RrUNE12过表达或RrUNE12沉默的果实上,外源NaCl处理也导致RrUNE12和RrGGP2转录本丰度比未添加NaCl处理的高。RrUNE12在果实愈伤组织中的过表达是通过上调RrGGP2和抗氧化相关基因的表达来缓解盐胁迫损害的。此外,RrUNE12在番茄植株中稳定过表达,导致AsA含量和抗氧化能力显著增加,同时抗盐胁迫能力增强。综上所述,RrUNE12是刺梨果实中AsA生物合成的激活剂,通过提高AsA水平和抗氧化能力,对盐胁迫的缓解具有积极作用。
A bHLH transcription factor RrUNE12 regulates salt tolerance and promotes ascorbate synthesis.
Key message: RrUNE12 binds to the RrGGP2 promoter to facilitate biosynthesis of AsA in Rosa roxburghii fruit. Furthermore, RrUNE12 upregulates antioxidant-related genes and maintains ROS homeostasis, thereby improving tolerance to salt stress. L-ascorbic acid (AsA) plays an essential role in stress defense as a major antioxidant in plant cells. GDP-L-galactose pyrophosphatase 2 (RrGGP2) has been previously identified as the key structural gene operating in AsA overproduction in Rosa roxburghii fruit. However, the transcriptional regulation of RrGGP2 in response to abiotic stress is not fully elucidated. In this study, we identified a bHLH transcription factor, RrUNE12, whose transcription level significantly correlated with RrGGP2 abundance and AsA accumulation in developing fruit. RrUNE12 is localized in the nucleus and specifically binds to the promoter of RrGGP2 to promote its transcription. The overexpression or silencing of RrUNE12 in R. roxburghii fruit and fruit callus further confirmed that RrUNE12 positively regulated RrGGP2 transcription and AsA level. Different abiotic stress treatments indicated that RrUNE12 was greatly induced by salt. Exogenous NaCl treatment on the RrUNE12-overexpressing or RrUNE12-silencing fruits also led to enhanced transcripts abundance of both RrUNE12 and RrGGP2, compared to the treatment without adding NaCl. RrUNE12 overexpression in fruit callus alleviated salt stress damage by upregulating the expression of RrGGP2 and antioxidant-related genes. Additionally, stable overexpression of RrUNE12 in tomato plants resulted in a significant increase in AsA content and antioxidant capacity, accompanied by an increased resistance to the salt stress. Collectively, the results suggest that RrUNE12 functions as an activator of AsA biosynthesis in R. roxburghii fruit and plays a positive role in mitigating salt stress by increasing both AsA level and the oxidation resistance.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.