口服中药煎剂植物microrna的特性与功能。

IF 2.1 4区 医学 Q3 CHEMISTRY, MEDICINAL
Planta medica Pub Date : 2025-04-01 Epub Date: 2025-01-28 DOI:10.1055/a-2527-2127
Yating Zhu, Yicheng Yu, Yao Jia, Ziqi Lin, Jinyue Lei, Diyao Wu, Tielong Xu, Longxue Li, Bin Zheng
{"title":"口服中药煎剂植物microrna的特性与功能。","authors":"Yating Zhu, Yicheng Yu, Yao Jia, Ziqi Lin, Jinyue Lei, Diyao Wu, Tielong Xu, Longxue Li, Bin Zheng","doi":"10.1055/a-2527-2127","DOIUrl":null,"url":null,"abstract":"<p><p>Herbal decoctions always contain numerous plant microRNAs, and some of these can be absorbed orally to exert cross-kingdom gene regulation. However, little is known about which specific types of herbal decoction-borne plant microRNAs are more likely to be absorbed. Thus, two antiviral herbal decoctions, Qingfei Paidu and Qingre Huashi Kangdu, were administered to human volunteers and rats, respectively, to investigate the characteristics of orally absorbed decoction-borne plant microRNAs. MIR-6240 - 3 p was identified as an absorbed plant microRNA in humans and is most highly expressed in Qingfei Paidu decoction. Therefore, the kinetics of MIR-6240 - 3 p were monitored in humans following the administration of the Qingfei Paidu decoction, and its antiviral effect on human coronavirus type 229E (HCoV-229E) was examined <i>in vitro</i>. There were 586 176 small RNAs identified in Qingfei Paidu decoction, of which 100 276 were orally absorbed by humans. In the Qingre Huashi Kangdu decoction, 124 026 small RNAs were detected, with 7484 being orally absorbed by rats. Logistical repression analysis revealed that absorbable plant small RNAs in both humans and rats presented higher expression levels, greater minimum free energy, and increased AU/UA frequencies compared to nonabsorbable plant small RNAs. The amount of MIR-6240 - 3 p in humans increased between 1 and 3 h after the administration of the Qingfei Paidu decoction. In addition, MIR-6240 - 3 p significantly reduced the RNA copy number and TCID<sub>50</sub> of HCoV-229E <i>in vitro</i>. These results suggest that herbal decoction-borne plant small RNAs with a higher expression level, greater minimum free energy, or an increased AU/UA frequency are more likely to be orally absorbed and could potentially mediate cross-kingdom gene regulation.</p>","PeriodicalId":20127,"journal":{"name":"Planta medica","volume":" ","pages":"283-292"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Characteristics and Functions of Orally Absorbed Herbal Decoction-Borne Plant MicroRNAs.\",\"authors\":\"Yating Zhu, Yicheng Yu, Yao Jia, Ziqi Lin, Jinyue Lei, Diyao Wu, Tielong Xu, Longxue Li, Bin Zheng\",\"doi\":\"10.1055/a-2527-2127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Herbal decoctions always contain numerous plant microRNAs, and some of these can be absorbed orally to exert cross-kingdom gene regulation. However, little is known about which specific types of herbal decoction-borne plant microRNAs are more likely to be absorbed. Thus, two antiviral herbal decoctions, Qingfei Paidu and Qingre Huashi Kangdu, were administered to human volunteers and rats, respectively, to investigate the characteristics of orally absorbed decoction-borne plant microRNAs. MIR-6240 - 3 p was identified as an absorbed plant microRNA in humans and is most highly expressed in Qingfei Paidu decoction. Therefore, the kinetics of MIR-6240 - 3 p were monitored in humans following the administration of the Qingfei Paidu decoction, and its antiviral effect on human coronavirus type 229E (HCoV-229E) was examined <i>in vitro</i>. There were 586 176 small RNAs identified in Qingfei Paidu decoction, of which 100 276 were orally absorbed by humans. In the Qingre Huashi Kangdu decoction, 124 026 small RNAs were detected, with 7484 being orally absorbed by rats. Logistical repression analysis revealed that absorbable plant small RNAs in both humans and rats presented higher expression levels, greater minimum free energy, and increased AU/UA frequencies compared to nonabsorbable plant small RNAs. The amount of MIR-6240 - 3 p in humans increased between 1 and 3 h after the administration of the Qingfei Paidu decoction. In addition, MIR-6240 - 3 p significantly reduced the RNA copy number and TCID<sub>50</sub> of HCoV-229E <i>in vitro</i>. These results suggest that herbal decoction-borne plant small RNAs with a higher expression level, greater minimum free energy, or an increased AU/UA frequency are more likely to be orally absorbed and could potentially mediate cross-kingdom gene regulation.</p>\",\"PeriodicalId\":20127,\"journal\":{\"name\":\"Planta medica\",\"volume\":\" \",\"pages\":\"283-292\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Planta medica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2527-2127\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planta medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2527-2127","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

中药煎剂中含有大量的植物microRNAs (miRNAs),其中一些可以口服吸收,发挥跨界基因调控作用。然而,对于哪些特定类型的植物mirna更容易被吸收,我们知之甚少。为此,采用清肺排毒(QFPD)和清热化湿康毒(QRHS)两种抗病毒中药煎剂分别给药于人体和大鼠,观察其口服吸收植物miRNAs的特性。MIR-6240-3p被鉴定为人体吸收的植物miRNA,在QFPD汤中表达量最高。因此,我们在给药后监测MIR-6240-3p在人体内的动力学,并在体外检测其对人冠状病毒229E型(HCoV-229E)的抗病毒作用。QFPD煎剂共鉴定出586,176个小rna (sRNAs),其中100,276个被人口服吸收。在QRHS煎剂中,共检测到124,026个sRNAs,其中7484个被大鼠口服吸收。逻辑抑制分析显示,与不可吸收的植物sRNAs相比,可吸收的植物sRNAs在人和大鼠中的表达水平更高,最小自由能更大,AU/UA频率更高。在给药后1- 3小时,人体内MIR-6240-3p的量增加。此外,MIR-6240-3p在体外显著降低HCoV-229E的RNA拷贝数和TCID50。这些结果表明,高表达水平、更高的最小自由能或更高的AU/UA频率的植物sRNAs更容易被口服吸收,并可能介导跨界基因调控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Characteristics and Functions of Orally Absorbed Herbal Decoction-Borne Plant MicroRNAs.

Herbal decoctions always contain numerous plant microRNAs, and some of these can be absorbed orally to exert cross-kingdom gene regulation. However, little is known about which specific types of herbal decoction-borne plant microRNAs are more likely to be absorbed. Thus, two antiviral herbal decoctions, Qingfei Paidu and Qingre Huashi Kangdu, were administered to human volunteers and rats, respectively, to investigate the characteristics of orally absorbed decoction-borne plant microRNAs. MIR-6240 - 3 p was identified as an absorbed plant microRNA in humans and is most highly expressed in Qingfei Paidu decoction. Therefore, the kinetics of MIR-6240 - 3 p were monitored in humans following the administration of the Qingfei Paidu decoction, and its antiviral effect on human coronavirus type 229E (HCoV-229E) was examined in vitro. There were 586 176 small RNAs identified in Qingfei Paidu decoction, of which 100 276 were orally absorbed by humans. In the Qingre Huashi Kangdu decoction, 124 026 small RNAs were detected, with 7484 being orally absorbed by rats. Logistical repression analysis revealed that absorbable plant small RNAs in both humans and rats presented higher expression levels, greater minimum free energy, and increased AU/UA frequencies compared to nonabsorbable plant small RNAs. The amount of MIR-6240 - 3 p in humans increased between 1 and 3 h after the administration of the Qingfei Paidu decoction. In addition, MIR-6240 - 3 p significantly reduced the RNA copy number and TCID50 of HCoV-229E in vitro. These results suggest that herbal decoction-borne plant small RNAs with a higher expression level, greater minimum free energy, or an increased AU/UA frequency are more likely to be orally absorbed and could potentially mediate cross-kingdom gene regulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Planta medica
Planta medica 医学-药学
CiteScore
5.10
自引率
3.70%
发文量
101
审稿时长
1.8 months
期刊介绍: Planta Medica is one of the leading international journals in the field of natural products – including marine organisms, fungi as well as micro-organisms – and medicinal plants. Planta Medica accepts original research papers, reviews, minireviews and perspectives from researchers worldwide. The journal publishes 18 issues per year. The following areas of medicinal plants and natural product research are covered: -Biological and Pharmacological Activities -Natural Product Chemistry & Analytical Studies -Pharmacokinetic Investigations -Formulation and Delivery Systems of Natural Products. The journal explicitly encourages the submission of chemically characterized extracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信