Feiyan Tian, Yipeng Liu, Meixuan Chen, Kenneth Edward Schriver, Anna Wang Roe
{"title":"在超高场7T MRI中,多通道红外刺激皮质柱选择性激活中尺度功能回路。","authors":"Feiyan Tian, Yipeng Liu, Meixuan Chen, Kenneth Edward Schriver, Anna Wang Roe","doi":"10.1016/j.crmeth.2024.100961","DOIUrl":null,"url":null,"abstract":"<p><p>To restore vision in the blind, advances in visual cortical prosthetics (VCPs) have offered high-channel-count electrical interfaces. Here, we design a 100-fiber optical bundle interface apposed to known feature-specific (color, shape, motion, and depth) functional columns that populate the visual cortex in humans, primates, and cats. Based on a non-viral optical stimulation method (INS, infrared neural stimulation; 1,875 nm), it can deliver dynamic patterns of stimulation, is non-penetrating and non-damaging to tissue, and is movable and removable. In addition, its magnetic resonance (MR) compatibility (INS-fMRI) permits systematic mapping of brain-wide circuits. In the MRI, we illustrate (1) the single-point activation of functionally specific networks, (2) shifting cortical networks activated via shifting points of stimulation, and (3) \"moving dot\" stimulation-evoked activation of higher-order motion-selective areas. We suggest that, by mimicking patterns of columnar activation normally activated by visual stimuli, a columnar VCP opens doors for the planned activation of feature-specific circuits and their associated visual percepts.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":"5 1","pages":"100961"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11840946/pdf/","citationCount":"0","resultStr":"{\"title\":\"Selective activation of mesoscale functional circuits via multichannel infrared stimulation of cortical columns in ultra-high-field 7T MRI.\",\"authors\":\"Feiyan Tian, Yipeng Liu, Meixuan Chen, Kenneth Edward Schriver, Anna Wang Roe\",\"doi\":\"10.1016/j.crmeth.2024.100961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To restore vision in the blind, advances in visual cortical prosthetics (VCPs) have offered high-channel-count electrical interfaces. Here, we design a 100-fiber optical bundle interface apposed to known feature-specific (color, shape, motion, and depth) functional columns that populate the visual cortex in humans, primates, and cats. Based on a non-viral optical stimulation method (INS, infrared neural stimulation; 1,875 nm), it can deliver dynamic patterns of stimulation, is non-penetrating and non-damaging to tissue, and is movable and removable. In addition, its magnetic resonance (MR) compatibility (INS-fMRI) permits systematic mapping of brain-wide circuits. In the MRI, we illustrate (1) the single-point activation of functionally specific networks, (2) shifting cortical networks activated via shifting points of stimulation, and (3) \\\"moving dot\\\" stimulation-evoked activation of higher-order motion-selective areas. We suggest that, by mimicking patterns of columnar activation normally activated by visual stimuli, a columnar VCP opens doors for the planned activation of feature-specific circuits and their associated visual percepts.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\"5 1\",\"pages\":\"100961\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11840946/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2024.100961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Selective activation of mesoscale functional circuits via multichannel infrared stimulation of cortical columns in ultra-high-field 7T MRI.
To restore vision in the blind, advances in visual cortical prosthetics (VCPs) have offered high-channel-count electrical interfaces. Here, we design a 100-fiber optical bundle interface apposed to known feature-specific (color, shape, motion, and depth) functional columns that populate the visual cortex in humans, primates, and cats. Based on a non-viral optical stimulation method (INS, infrared neural stimulation; 1,875 nm), it can deliver dynamic patterns of stimulation, is non-penetrating and non-damaging to tissue, and is movable and removable. In addition, its magnetic resonance (MR) compatibility (INS-fMRI) permits systematic mapping of brain-wide circuits. In the MRI, we illustrate (1) the single-point activation of functionally specific networks, (2) shifting cortical networks activated via shifting points of stimulation, and (3) "moving dot" stimulation-evoked activation of higher-order motion-selective areas. We suggest that, by mimicking patterns of columnar activation normally activated by visual stimuli, a columnar VCP opens doors for the planned activation of feature-specific circuits and their associated visual percepts.