多细胞PID控制对生物过程的鲁棒调节。

IF 3.7 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2025-01-01 Epub Date: 2025-01-29 DOI:10.1098/rsif.2024.0583
Vittoria Martinelli, Davide Fiore, Davide Salzano, Mario di Bernardo
{"title":"多细胞PID控制对生物过程的鲁棒调节。","authors":"Vittoria Martinelli, Davide Fiore, Davide Salzano, Mario di Bernardo","doi":"10.1098/rsif.2024.0583","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents the first implementation of a proportional-integral-derivative (PID) biomolecular controller within a consortium of different cell populations, aimed at robust regulation of biological processes. By leveraging the modularity and cooperative dynamics of multiple engineered cell populations, we develop a comprehensive <i>in silico</i> analysis of the performance and robustness of P, PD, PI and PID control architectures. Our theoretical findings, validated through <i>in silico</i> experiments using the BSim agent-based simulation platform for bacterial populations, demonstrate the robustness and effectiveness of our multicellular PID control strategy. This innovative approach addresses critical limitations in current control methods, offering significant potential for applications in metabolic engineering, therapeutic contexts and industrial biotechnology. Future work will focus on experimental validation <i>in vivo</i> and further refinement of the control models.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 222","pages":"20240583"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775662/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multicellular PID control for robust regulation of biological processes.\",\"authors\":\"Vittoria Martinelli, Davide Fiore, Davide Salzano, Mario di Bernardo\",\"doi\":\"10.1098/rsif.2024.0583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article presents the first implementation of a proportional-integral-derivative (PID) biomolecular controller within a consortium of different cell populations, aimed at robust regulation of biological processes. By leveraging the modularity and cooperative dynamics of multiple engineered cell populations, we develop a comprehensive <i>in silico</i> analysis of the performance and robustness of P, PD, PI and PID control architectures. Our theoretical findings, validated through <i>in silico</i> experiments using the BSim agent-based simulation platform for bacterial populations, demonstrate the robustness and effectiveness of our multicellular PID control strategy. This innovative approach addresses critical limitations in current control methods, offering significant potential for applications in metabolic engineering, therapeutic contexts and industrial biotechnology. Future work will focus on experimental validation <i>in vivo</i> and further refinement of the control models.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"22 222\",\"pages\":\"20240583\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775662/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2024.0583\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0583","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了比例-积分-导数(PID)生物分子控制器在不同细胞群的财团中的第一个实现,旨在对生物过程进行稳健调节。通过利用多个工程细胞群的模块化和合作动力学,我们开发了P, PD, PI和PID控制体系结构的性能和鲁棒性的全面硅分析。我们的理论发现,通过使用基于BSim代理的细菌种群模拟平台的硅实验验证,证明了我们的多细胞PID控制策略的鲁棒性和有效性。这种创新的方法解决了当前控制方法的关键局限性,为代谢工程、治疗环境和工业生物技术的应用提供了巨大的潜力。未来的工作将集中在体内实验验证和进一步完善控制模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multicellular PID control for robust regulation of biological processes.

This article presents the first implementation of a proportional-integral-derivative (PID) biomolecular controller within a consortium of different cell populations, aimed at robust regulation of biological processes. By leveraging the modularity and cooperative dynamics of multiple engineered cell populations, we develop a comprehensive in silico analysis of the performance and robustness of P, PD, PI and PID control architectures. Our theoretical findings, validated through in silico experiments using the BSim agent-based simulation platform for bacterial populations, demonstrate the robustness and effectiveness of our multicellular PID control strategy. This innovative approach addresses critical limitations in current control methods, offering significant potential for applications in metabolic engineering, therapeutic contexts and industrial biotechnology. Future work will focus on experimental validation in vivo and further refinement of the control models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信