Mara Duven, Alina Friedrichs, Michael G Tomlinson, Imke Steffen, Gisa Gerold
{"title":"四蛋白10和15支持委内瑞拉马脑炎病毒在星形细胞瘤细胞中的复制。","authors":"Mara Duven, Alina Friedrichs, Michael G Tomlinson, Imke Steffen, Gisa Gerold","doi":"10.1091/mbc.E24-12-0574","DOIUrl":null,"url":null,"abstract":"<p><p>Tetraspanins (Tspans) are transmembrane proteins that coordinate life cycle steps of viruses from distinct families. Here, we identify the human Tspan10 and Tspan15, both members of the TspanC8 subfamily, as replication factors for alphavirus Venezuelan equine encephalitis virus (VEEV) in astrocytoma cells. Pharmacological inhibition and small interfering RNA (siRNA)-mediated silencing of TspanC8 interactor a disintegrin and metalloproteinase 10 (ADAM10) reduced VEEV infection. Silencing of Tspan10, Tspan15, and ADAM10 did not affect VEEV entry but diminished viral genome replication. We report that Tspan10 is important for VEEV infection of several cell lines, while silencing of Tspan15 diminishes infection with several alphaviruses, but not flaviviruses, in astrocytoma cells. Conversely, we demonstrate that siRNA-mediated silencing of Tspan14, another member of the TspanC8 family, enhances infection with lentiviral pseudoparticles harbouring the envelope proteins of VEEV, identifying it as a restriction factor for VEEV entry. Silencing of ADAM10/Tspan15 substrate neuronal (N)-cadherin reduced VEEV infectivity, suggesting potential roles of ADAM10 substrates in VEEV infection. In sum, our study identifies three TspanC8s and ADAM10 as important modulators of VEEV infectivity.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar35"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974957/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tetraspanins 10 and 15 support Venezuelan equine encephalitis virus replication in astrocytoma cells.\",\"authors\":\"Mara Duven, Alina Friedrichs, Michael G Tomlinson, Imke Steffen, Gisa Gerold\",\"doi\":\"10.1091/mbc.E24-12-0574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tetraspanins (Tspans) are transmembrane proteins that coordinate life cycle steps of viruses from distinct families. Here, we identify the human Tspan10 and Tspan15, both members of the TspanC8 subfamily, as replication factors for alphavirus Venezuelan equine encephalitis virus (VEEV) in astrocytoma cells. Pharmacological inhibition and small interfering RNA (siRNA)-mediated silencing of TspanC8 interactor a disintegrin and metalloproteinase 10 (ADAM10) reduced VEEV infection. Silencing of Tspan10, Tspan15, and ADAM10 did not affect VEEV entry but diminished viral genome replication. We report that Tspan10 is important for VEEV infection of several cell lines, while silencing of Tspan15 diminishes infection with several alphaviruses, but not flaviviruses, in astrocytoma cells. Conversely, we demonstrate that siRNA-mediated silencing of Tspan14, another member of the TspanC8 family, enhances infection with lentiviral pseudoparticles harbouring the envelope proteins of VEEV, identifying it as a restriction factor for VEEV entry. Silencing of ADAM10/Tspan15 substrate neuronal (N)-cadherin reduced VEEV infectivity, suggesting potential roles of ADAM10 substrates in VEEV infection. In sum, our study identifies three TspanC8s and ADAM10 as important modulators of VEEV infectivity.</p>\",\"PeriodicalId\":18735,\"journal\":{\"name\":\"Molecular Biology of the Cell\",\"volume\":\" \",\"pages\":\"ar35\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974957/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biology of the Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1091/mbc.E24-12-0574\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-12-0574","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Tetraspanins 10 and 15 support Venezuelan equine encephalitis virus replication in astrocytoma cells.
Tetraspanins (Tspans) are transmembrane proteins that coordinate life cycle steps of viruses from distinct families. Here, we identify the human Tspan10 and Tspan15, both members of the TspanC8 subfamily, as replication factors for alphavirus Venezuelan equine encephalitis virus (VEEV) in astrocytoma cells. Pharmacological inhibition and small interfering RNA (siRNA)-mediated silencing of TspanC8 interactor a disintegrin and metalloproteinase 10 (ADAM10) reduced VEEV infection. Silencing of Tspan10, Tspan15, and ADAM10 did not affect VEEV entry but diminished viral genome replication. We report that Tspan10 is important for VEEV infection of several cell lines, while silencing of Tspan15 diminishes infection with several alphaviruses, but not flaviviruses, in astrocytoma cells. Conversely, we demonstrate that siRNA-mediated silencing of Tspan14, another member of the TspanC8 family, enhances infection with lentiviral pseudoparticles harbouring the envelope proteins of VEEV, identifying it as a restriction factor for VEEV entry. Silencing of ADAM10/Tspan15 substrate neuronal (N)-cadherin reduced VEEV infectivity, suggesting potential roles of ADAM10 substrates in VEEV infection. In sum, our study identifies three TspanC8s and ADAM10 as important modulators of VEEV infectivity.
期刊介绍:
MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.