内质网降解增强α-甘露糖苷酶样蛋白3减弱未折叠蛋白反应,在肝癌细胞和肝细胞癌患者中具有促生存和促病毒作用。

IF 9 2区 医学 Q1 CELL BIOLOGY
Alina-Veronica Ghionescu, Mihaela Uta, Andrei Sorop, Catalin Lazar, Petruta R Flintoaca-Alexandru, Gabriela Chiritoiu, Livia Sima, Stefana-Maria Petrescu, Simona Olimpia Dima, Norica Branza-Nichita
{"title":"内质网降解增强α-甘露糖苷酶样蛋白3减弱未折叠蛋白反应,在肝癌细胞和肝细胞癌患者中具有促生存和促病毒作用。","authors":"Alina-Veronica Ghionescu, Mihaela Uta, Andrei Sorop, Catalin Lazar, Petruta R Flintoaca-Alexandru, Gabriela Chiritoiu, Livia Sima, Stefana-Maria Petrescu, Simona Olimpia Dima, Norica Branza-Nichita","doi":"10.1186/s12929-024-01103-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic hepatitis B virus (HBV) infection is a major risk for development of hepatocellular carcinoma (HCC), a frequent malignancy with a poor survival rate. HBV infection results in significant endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) signaling, a contributing factor to carcinogenesis. As part of the UPR, the ER-associated degradation (ERAD) pathway is responsible for removing the burden of misfolded secretory proteins, to re-establish cellular homeostasis. Emerging evidence indicates consistent upregulation of ERAD factors, including members of the ER degradation-enhancing alpha-mannosidase-like protein (EDEM) family in infection and various tumor types. However, the significance of this gene expression pattern in HBV-driven pathology is just beginning to be deciphered.</p><p><strong>Methods: </strong>In this study we quantified the expression of the ERAD factor EDEM3, in a cohort of HCC patients with and without HBV infection, and validated our results by analysis of publically available transcriptomic and microarray data sets. We performed mechanistic studies in HepaRG cells with modulated EDEM3 expression to address UPR, ERAD, autophagy and apoptosis signaling, and their consequences on HBV infection.</p><p><strong>Results: </strong>Our work revealed significantly elevated EDEM3 expression in HCC tissues irrespective of HBV infection, while the highest levels were observed in tissues from HBV-infected patients. Investigation of published transcriptomic data sets confirmed EDEM3 upregulation in independent HCC patient cohorts, associated with tumor progression, poor survival prognosis and resistance to therapy. EDEM3-overexpressing hepatic cells exhibited attenuated UPR and activated secretory autophagy, which promoted HBV production. Conversely, cell depletion of EDEM3 resulted in significant ER stress inducing pro-apoptotic mechanisms and cell death.</p><p><strong>Conclusions: </strong>We provide evidence of major implications of the ERAD pathway in HBV infection and HCC development and progression. Our results suggest that ERAD activation in HBV-infected cells is a protective mechanism against prolonged ER stress, potentially contributing to establishment of chronic HBV infection and promoting tumorigenesis. Developing specific inhibitors for ERAD factors may be an attractive approach to improve efficiency of current antiviral and anticancer therapies.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"11"},"PeriodicalIF":9.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752926/pdf/","citationCount":"0","resultStr":"{\"title\":\"The endoplasmic reticulum degradation-enhancing α-mannosidase-like protein 3 attenuates the unfolded protein response and has pro-survival and pro-viral roles in hepatoma cells and hepatocellular carcinoma patients.\",\"authors\":\"Alina-Veronica Ghionescu, Mihaela Uta, Andrei Sorop, Catalin Lazar, Petruta R Flintoaca-Alexandru, Gabriela Chiritoiu, Livia Sima, Stefana-Maria Petrescu, Simona Olimpia Dima, Norica Branza-Nichita\",\"doi\":\"10.1186/s12929-024-01103-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Chronic hepatitis B virus (HBV) infection is a major risk for development of hepatocellular carcinoma (HCC), a frequent malignancy with a poor survival rate. HBV infection results in significant endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) signaling, a contributing factor to carcinogenesis. As part of the UPR, the ER-associated degradation (ERAD) pathway is responsible for removing the burden of misfolded secretory proteins, to re-establish cellular homeostasis. Emerging evidence indicates consistent upregulation of ERAD factors, including members of the ER degradation-enhancing alpha-mannosidase-like protein (EDEM) family in infection and various tumor types. However, the significance of this gene expression pattern in HBV-driven pathology is just beginning to be deciphered.</p><p><strong>Methods: </strong>In this study we quantified the expression of the ERAD factor EDEM3, in a cohort of HCC patients with and without HBV infection, and validated our results by analysis of publically available transcriptomic and microarray data sets. We performed mechanistic studies in HepaRG cells with modulated EDEM3 expression to address UPR, ERAD, autophagy and apoptosis signaling, and their consequences on HBV infection.</p><p><strong>Results: </strong>Our work revealed significantly elevated EDEM3 expression in HCC tissues irrespective of HBV infection, while the highest levels were observed in tissues from HBV-infected patients. Investigation of published transcriptomic data sets confirmed EDEM3 upregulation in independent HCC patient cohorts, associated with tumor progression, poor survival prognosis and resistance to therapy. EDEM3-overexpressing hepatic cells exhibited attenuated UPR and activated secretory autophagy, which promoted HBV production. Conversely, cell depletion of EDEM3 resulted in significant ER stress inducing pro-apoptotic mechanisms and cell death.</p><p><strong>Conclusions: </strong>We provide evidence of major implications of the ERAD pathway in HBV infection and HCC development and progression. Our results suggest that ERAD activation in HBV-infected cells is a protective mechanism against prolonged ER stress, potentially contributing to establishment of chronic HBV infection and promoting tumorigenesis. Developing specific inhibitors for ERAD factors may be an attractive approach to improve efficiency of current antiviral and anticancer therapies.</p>\",\"PeriodicalId\":15365,\"journal\":{\"name\":\"Journal of Biomedical Science\",\"volume\":\"32 1\",\"pages\":\"11\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752926/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12929-024-01103-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12929-024-01103-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:慢性乙型肝炎病毒(HBV)感染是发展为肝细胞癌(HCC)的主要危险因素,HCC是一种常见的恶性肿瘤,生存率低。HBV感染导致显著的内质网(ER)应激和未折叠蛋白反应(UPR)信号的激活,这是致癌的一个因素。作为UPR的一部分,内质网相关降解(ERAD)途径负责消除错误折叠的分泌蛋白的负担,以重建细胞稳态。新出现的证据表明,ERAD因子,包括内质网降解增强α -甘露糖苷酶样蛋白(EDEM)家族成员在感染和各种肿瘤类型中一致上调。然而,这种基因表达模式在hbv驱动病理中的意义才刚刚开始被破译。方法:在这项研究中,我们量化了ERAD因子EDEM3在一组有和没有HBV感染的HCC患者中的表达,并通过分析公开的转录组学和微阵列数据集验证了我们的结果。我们在HepaRG细胞中进行了EDEM3表达调节的机制研究,以解决UPR、ERAD、自噬和凋亡信号及其对HBV感染的影响。结果:我们的工作显示,与HBV感染无关,EDEM3在HCC组织中的表达显著升高,而在HBV感染患者的组织中观察到最高水平。对已发表的转录组学数据集的调查证实,在独立的HCC患者队列中,EDEM3上调与肿瘤进展、生存预后差和治疗耐药相关。过表达edem3的肝细胞表现出UPR减弱和分泌性自噬激活,从而促进HBV的产生。相反,EDEM3的细胞耗竭导致内质网应激诱导促凋亡机制和细胞死亡。结论:我们提供了ERAD通路在HBV感染和HCC发生和进展中的主要意义的证据。我们的研究结果表明,在HBV感染的细胞中,ERAD的激活是一种针对长期内质网应激的保护机制,可能有助于慢性HBV感染的建立和促进肿瘤的发生。开发ERAD因子的特异性抑制剂可能是提高当前抗病毒和抗癌治疗效率的一种有吸引力的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The endoplasmic reticulum degradation-enhancing α-mannosidase-like protein 3 attenuates the unfolded protein response and has pro-survival and pro-viral roles in hepatoma cells and hepatocellular carcinoma patients.

Background: Chronic hepatitis B virus (HBV) infection is a major risk for development of hepatocellular carcinoma (HCC), a frequent malignancy with a poor survival rate. HBV infection results in significant endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) signaling, a contributing factor to carcinogenesis. As part of the UPR, the ER-associated degradation (ERAD) pathway is responsible for removing the burden of misfolded secretory proteins, to re-establish cellular homeostasis. Emerging evidence indicates consistent upregulation of ERAD factors, including members of the ER degradation-enhancing alpha-mannosidase-like protein (EDEM) family in infection and various tumor types. However, the significance of this gene expression pattern in HBV-driven pathology is just beginning to be deciphered.

Methods: In this study we quantified the expression of the ERAD factor EDEM3, in a cohort of HCC patients with and without HBV infection, and validated our results by analysis of publically available transcriptomic and microarray data sets. We performed mechanistic studies in HepaRG cells with modulated EDEM3 expression to address UPR, ERAD, autophagy and apoptosis signaling, and their consequences on HBV infection.

Results: Our work revealed significantly elevated EDEM3 expression in HCC tissues irrespective of HBV infection, while the highest levels were observed in tissues from HBV-infected patients. Investigation of published transcriptomic data sets confirmed EDEM3 upregulation in independent HCC patient cohorts, associated with tumor progression, poor survival prognosis and resistance to therapy. EDEM3-overexpressing hepatic cells exhibited attenuated UPR and activated secretory autophagy, which promoted HBV production. Conversely, cell depletion of EDEM3 resulted in significant ER stress inducing pro-apoptotic mechanisms and cell death.

Conclusions: We provide evidence of major implications of the ERAD pathway in HBV infection and HCC development and progression. Our results suggest that ERAD activation in HBV-infected cells is a protective mechanism against prolonged ER stress, potentially contributing to establishment of chronic HBV infection and promoting tumorigenesis. Developing specific inhibitors for ERAD factors may be an attractive approach to improve efficiency of current antiviral and anticancer therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomedical Science
Journal of Biomedical Science 医学-医学:研究与实验
CiteScore
18.50
自引率
0.90%
发文量
95
审稿时长
1 months
期刊介绍: The Journal of Biomedical Science is an open access, peer-reviewed journal that focuses on fundamental and molecular aspects of basic medical sciences. It emphasizes molecular studies of biomedical problems and mechanisms. The National Science and Technology Council (NSTC), Taiwan supports the journal and covers the publication costs for accepted articles. The journal aims to provide an international platform for interdisciplinary discussions and contribute to the advancement of medicine. It benefits both readers and authors by accelerating the dissemination of research information and providing maximum access to scholarly communication. All articles published in the Journal of Biomedical Science are included in various databases such as Biological Abstracts, BIOSIS, CABI, CAS, Citebase, Current contents, DOAJ, Embase, EmBiology, and Global Health, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信