外显和内显1,5-α- l -阿拉伯糖酶和益生元阿拉伯寡糖的生产。

IF 2.5 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ye-Rin Ju, Su Been Im, Da Eun Jung, Min Jeong Son, Chan-Young Park, Min Ho Jeon, Ju Hee Hwang, Soo Jung Lee, Tae-Jip Kim
{"title":"外显和内显1,5-α- l -阿拉伯糖酶和益生元阿拉伯寡糖的生产。","authors":"Ye-Rin Ju, Su Been Im, Da Eun Jung, Min Jeong Son, Chan-Young Park, Min Ho Jeon, Ju Hee Hwang, Soo Jung Lee, Tae-Jip Kim","doi":"10.4014/jmb.2412.12052","DOIUrl":null,"url":null,"abstract":"<p><p>There is growing interest in pentose-based prebiotic oligosaccharides as alternatives to traditional hexose-based prebiotics. Among these, arabino-oligosaccharides (AOS), derived from the enzymatic hydrolysis of arabinan polymers, have gained significant attention. AOS can selectively stimulate the growth of beneficial gut bacteria, including <i>Bifidobacterium</i> and <i>Bacteroides</i> species, and contribute to health-benefit functions such as blood sugar control, positioning AOS as a promising synbiotic candidate. For the industrial production of AOS, the development of efficient enzymatic processes is essential, with exo- and endo-1,5-α-L-arabinanases (exo- and endo-ABNs) playing a crucial catalytic role. Most ABNs belong to the glycoside hydrolase (GH) family 43, characterized by a five-bladed β-propeller fold structure. These enzymes hydrolyze internal α-1,5-L-arabinofuranosidic linkages, producing AOS with varying degrees of polymerization. Some ABNs GH43 were known to exhibit exo-type hydrolytic modes of action, producing specific AOS products such as arabinotriose. Additionally, exo-ABNs from GH93, which feature a six-bladed β-propeller fold, exclusively release arabinobiose through their exo-type catalytic mechanism. This review represents the first comprehensive analysis of exo- and endo-ABNs, offering scientific insights into their biotechnological potential for AOS production. It systematically compares enzyme classification, structural differences, catalytic mechanisms, paving the way for innovative applications in health, food, and pharmaceutical industries.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"35 ","pages":"e2412052"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813348/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exo- and Endo-1,5-α-L-Arabinanases and Prebiotic Arabino-Oligosaccharides Production.\",\"authors\":\"Ye-Rin Ju, Su Been Im, Da Eun Jung, Min Jeong Son, Chan-Young Park, Min Ho Jeon, Ju Hee Hwang, Soo Jung Lee, Tae-Jip Kim\",\"doi\":\"10.4014/jmb.2412.12052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is growing interest in pentose-based prebiotic oligosaccharides as alternatives to traditional hexose-based prebiotics. Among these, arabino-oligosaccharides (AOS), derived from the enzymatic hydrolysis of arabinan polymers, have gained significant attention. AOS can selectively stimulate the growth of beneficial gut bacteria, including <i>Bifidobacterium</i> and <i>Bacteroides</i> species, and contribute to health-benefit functions such as blood sugar control, positioning AOS as a promising synbiotic candidate. For the industrial production of AOS, the development of efficient enzymatic processes is essential, with exo- and endo-1,5-α-L-arabinanases (exo- and endo-ABNs) playing a crucial catalytic role. Most ABNs belong to the glycoside hydrolase (GH) family 43, characterized by a five-bladed β-propeller fold structure. These enzymes hydrolyze internal α-1,5-L-arabinofuranosidic linkages, producing AOS with varying degrees of polymerization. Some ABNs GH43 were known to exhibit exo-type hydrolytic modes of action, producing specific AOS products such as arabinotriose. Additionally, exo-ABNs from GH93, which feature a six-bladed β-propeller fold, exclusively release arabinobiose through their exo-type catalytic mechanism. This review represents the first comprehensive analysis of exo- and endo-ABNs, offering scientific insights into their biotechnological potential for AOS production. It systematically compares enzyme classification, structural differences, catalytic mechanisms, paving the way for innovative applications in health, food, and pharmaceutical industries.</p>\",\"PeriodicalId\":16481,\"journal\":{\"name\":\"Journal of microbiology and biotechnology\",\"volume\":\"35 \",\"pages\":\"e2412052\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813348/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microbiology and biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4014/jmb.2412.12052\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2412.12052","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

以戊糖为基础的益生元低聚糖作为传统己糖为基础的益生元的替代品越来越受到关注。其中,阿拉伯寡糖(AOS)是由阿拉伯寡糖聚合物酶法水解而成的,已经引起了人们的极大关注。AOS可以选择性地刺激肠道有益菌的生长,包括双歧杆菌和拟杆菌,并有助于健康有益的功能,如血糖控制,使AOS成为一个有前途的合成候选菌。为了实现AOS的工业化生产,开发高效的酶促过程是必不可少的,其中外显和内显-1,5-α- l -阿拉伯糖酶(外显和内显- abns)起着至关重要的催化作用。大多数abn属于糖苷水解酶(GH)家族43,其特征是五叶式β-螺旋桨折叠结构。这些酶水解内部α-1,5- l -阿拉伯糖醛酸键,产生不同程度聚合的AOS。已知一些ABNs GH43表现出外显型水解作用模式,产生特定的AOS产物,如阿拉伯糖。此外,GH93的exo- abn具有六叶片β-螺旋桨折叠,通过其外显型催化机制专门释放阿拉伯糖。这篇综述首次对外链和内链abns进行了全面分析,为它们在AOS生产中的生物技术潜力提供了科学的见解。它系统地比较了酶的分类、结构差异、催化机制,为健康、食品和制药行业的创新应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exo- and Endo-1,5-α-L-Arabinanases and Prebiotic Arabino-Oligosaccharides Production.

There is growing interest in pentose-based prebiotic oligosaccharides as alternatives to traditional hexose-based prebiotics. Among these, arabino-oligosaccharides (AOS), derived from the enzymatic hydrolysis of arabinan polymers, have gained significant attention. AOS can selectively stimulate the growth of beneficial gut bacteria, including Bifidobacterium and Bacteroides species, and contribute to health-benefit functions such as blood sugar control, positioning AOS as a promising synbiotic candidate. For the industrial production of AOS, the development of efficient enzymatic processes is essential, with exo- and endo-1,5-α-L-arabinanases (exo- and endo-ABNs) playing a crucial catalytic role. Most ABNs belong to the glycoside hydrolase (GH) family 43, characterized by a five-bladed β-propeller fold structure. These enzymes hydrolyze internal α-1,5-L-arabinofuranosidic linkages, producing AOS with varying degrees of polymerization. Some ABNs GH43 were known to exhibit exo-type hydrolytic modes of action, producing specific AOS products such as arabinotriose. Additionally, exo-ABNs from GH93, which feature a six-bladed β-propeller fold, exclusively release arabinobiose through their exo-type catalytic mechanism. This review represents the first comprehensive analysis of exo- and endo-ABNs, offering scientific insights into their biotechnological potential for AOS production. It systematically compares enzyme classification, structural differences, catalytic mechanisms, paving the way for innovative applications in health, food, and pharmaceutical industries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of microbiology and biotechnology
Journal of microbiology and biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
5.50
自引率
3.60%
发文量
151
审稿时长
2 months
期刊介绍: The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信