赖氨酸氧化酶样2通过激活磷酸肌肽3-激酶/蛋白激酶B途径促进子宫内膜癌细胞的存活、迁移和凋亡。

IF 2.1 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Jiashi Gu, Huanmei Sun, Juan Shao, Hu Zhang, Zhanpeng Zhu, Dongqin Ma, Yingchun Duan
{"title":"赖氨酸氧化酶样2通过激活磷酸肌肽3-激酶/蛋白激酶B途径促进子宫内膜癌细胞的存活、迁移和凋亡。","authors":"Jiashi Gu, Huanmei Sun, Juan Shao, Hu Zhang, Zhanpeng Zhu, Dongqin Ma, Yingchun Duan","doi":"10.22038/ijbms.2024.79933.17317","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>LOXL2, known as Lysyl oxidase-like 2, is classified as a lysyl oxidase (LOX) family member. However, its role and mechanism in endometrial cancer (EC) are unknown. Therefore, we aimed to investigate the potential role and mechanism of LOXL2 in EC.</p><p><strong>Materials and methods: </strong>The levels of LOXL2 expression in EC tissues and normal adjacent tissues were evaluated by immunohistochemically (IHC) labeling. Following the dye application, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Transwell methodologies were executed to evaluate the effects of LOXL2 inhibition and up-regulation on the growth, programmed cell death, migration, and susceptibility to iron-dependent cell death of EC. Moreover, protein analysis through Western blotting and gene expression analysis using Real-time quantitative PCR (RT-qPCR) was employed to measure the levels of pertinent biomarkers.</p><p><strong>Results: </strong>LOXL2 is highly expressed in both EC tissues and serum in vivo. Silencing LOXL2 reduced EC cell proliferation and migration while increasing apoptosis <i>in vitro</i>. LOXL2 silencing increased the ferroptosis-related proteins Solute Carrier Family 7 Member 11 (SLC7A11) and Ferritin Heavy Chain 1 (FTH1) while decreasing Glutathione Peroxidase 4 (GPX4) (both, <i>P<</i>0.001). Additionally, LOXL2 silencing reduced the p-PI3K and p-Akt protein expression, while LOXL2 overexpression (OE-LOXL2) elevated the p-PI3K and p-Akt protein expression (both, <i>P<</i>0.001). Additionally, LOXL2 silencing increases SLC7A11 and FTH1 while decreasing GPX4 (both <i>P<</i>0.001). LOXL2 overexpression has the opposite effect. However, the LY294002 inhibitor restores SLC7A11 and FTH1 expression while decreasing GPX4 (<i>P<</i>0.001).</p><p><strong>Conclusion: </strong>Our research demonstrated that LOXL2 might protect EC via phosphorylation by activating the PI3K/AKT pathway.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":"28 1","pages":"72-79"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771328/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lysyl oxidase-like 2 promotes the survival, migration, and ferroptosis of endometrial cancer cells by activating the phosphoinositide 3-kinase/protein kinase B pathway.\",\"authors\":\"Jiashi Gu, Huanmei Sun, Juan Shao, Hu Zhang, Zhanpeng Zhu, Dongqin Ma, Yingchun Duan\",\"doi\":\"10.22038/ijbms.2024.79933.17317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>LOXL2, known as Lysyl oxidase-like 2, is classified as a lysyl oxidase (LOX) family member. However, its role and mechanism in endometrial cancer (EC) are unknown. Therefore, we aimed to investigate the potential role and mechanism of LOXL2 in EC.</p><p><strong>Materials and methods: </strong>The levels of LOXL2 expression in EC tissues and normal adjacent tissues were evaluated by immunohistochemically (IHC) labeling. Following the dye application, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Transwell methodologies were executed to evaluate the effects of LOXL2 inhibition and up-regulation on the growth, programmed cell death, migration, and susceptibility to iron-dependent cell death of EC. Moreover, protein analysis through Western blotting and gene expression analysis using Real-time quantitative PCR (RT-qPCR) was employed to measure the levels of pertinent biomarkers.</p><p><strong>Results: </strong>LOXL2 is highly expressed in both EC tissues and serum in vivo. Silencing LOXL2 reduced EC cell proliferation and migration while increasing apoptosis <i>in vitro</i>. LOXL2 silencing increased the ferroptosis-related proteins Solute Carrier Family 7 Member 11 (SLC7A11) and Ferritin Heavy Chain 1 (FTH1) while decreasing Glutathione Peroxidase 4 (GPX4) (both, <i>P<</i>0.001). Additionally, LOXL2 silencing reduced the p-PI3K and p-Akt protein expression, while LOXL2 overexpression (OE-LOXL2) elevated the p-PI3K and p-Akt protein expression (both, <i>P<</i>0.001). Additionally, LOXL2 silencing increases SLC7A11 and FTH1 while decreasing GPX4 (both <i>P<</i>0.001). LOXL2 overexpression has the opposite effect. However, the LY294002 inhibitor restores SLC7A11 and FTH1 expression while decreasing GPX4 (<i>P<</i>0.001).</p><p><strong>Conclusion: </strong>Our research demonstrated that LOXL2 might protect EC via phosphorylation by activating the PI3K/AKT pathway.</p>\",\"PeriodicalId\":14495,\"journal\":{\"name\":\"Iranian Journal of Basic Medical Sciences\",\"volume\":\"28 1\",\"pages\":\"72-79\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771328/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Basic Medical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.22038/ijbms.2024.79933.17317\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Basic Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22038/ijbms.2024.79933.17317","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:LOXL2,被称为赖氨酸氧化酶样2,被归类为赖氨酸氧化酶(LOX)家族成员。然而,其在子宫内膜癌(EC)中的作用和机制尚不清楚。因此,我们旨在探讨LOXL2在EC中的潜在作用和机制。材料与方法:采用免疫组织化学(IHC)标记法检测EC组织及正常癌旁组织中LOXL2的表达水平。应用染料后,采用3-(4,5-二甲基噻唑-2-酰基)-2,5-二苯基溴化四唑(MTT)和Transwell方法评估LOXL2抑制和上调对EC生长、程序性细胞死亡、迁移和铁依赖性细胞死亡易感性的影响。此外,通过Western blotting蛋白分析和实时荧光定量PCR (RT-qPCR)基因表达分析来检测相关生物标志物的水平。结果:LOXL2在EC组织和血清中均有高表达。沉默LOXL2可减少EC细胞的增殖和迁移,同时增加体外凋亡。LOXL2沉默增加了铁中毒相关蛋白溶质载体家族7成员11 (SLC7A11)和铁蛋白重链1 (FTH1),同时降低谷胱甘肽过氧化物酶4 (GPX4)(均p < 0.001)。此外,LOXL2沉默降低了p-PI3K和p-Akt蛋白的表达,而LOXL2过表达(OE-LOXL2)升高了p-PI3K和p-Akt蛋白的表达(均为P0.001)。此外,LOXL2沉默增加了SLC7A11和FTH1,同时降低了GPX4(均P0.001)。LOXL2过表达具有相反的效果。然而,LY294002抑制剂可以恢复SLC7A11和FTH1的表达,同时降低GPX4的表达(P0.001)。结论:我们的研究表明LOXL2可能通过激活PI3K/AKT通路磷酸化来保护EC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lysyl oxidase-like 2 promotes the survival, migration, and ferroptosis of endometrial cancer cells by activating the phosphoinositide 3-kinase/protein kinase B pathway.

Objectives: LOXL2, known as Lysyl oxidase-like 2, is classified as a lysyl oxidase (LOX) family member. However, its role and mechanism in endometrial cancer (EC) are unknown. Therefore, we aimed to investigate the potential role and mechanism of LOXL2 in EC.

Materials and methods: The levels of LOXL2 expression in EC tissues and normal adjacent tissues were evaluated by immunohistochemically (IHC) labeling. Following the dye application, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Transwell methodologies were executed to evaluate the effects of LOXL2 inhibition and up-regulation on the growth, programmed cell death, migration, and susceptibility to iron-dependent cell death of EC. Moreover, protein analysis through Western blotting and gene expression analysis using Real-time quantitative PCR (RT-qPCR) was employed to measure the levels of pertinent biomarkers.

Results: LOXL2 is highly expressed in both EC tissues and serum in vivo. Silencing LOXL2 reduced EC cell proliferation and migration while increasing apoptosis in vitro. LOXL2 silencing increased the ferroptosis-related proteins Solute Carrier Family 7 Member 11 (SLC7A11) and Ferritin Heavy Chain 1 (FTH1) while decreasing Glutathione Peroxidase 4 (GPX4) (both, P<0.001). Additionally, LOXL2 silencing reduced the p-PI3K and p-Akt protein expression, while LOXL2 overexpression (OE-LOXL2) elevated the p-PI3K and p-Akt protein expression (both, P<0.001). Additionally, LOXL2 silencing increases SLC7A11 and FTH1 while decreasing GPX4 (both P<0.001). LOXL2 overexpression has the opposite effect. However, the LY294002 inhibitor restores SLC7A11 and FTH1 expression while decreasing GPX4 (P<0.001).

Conclusion: Our research demonstrated that LOXL2 might protect EC via phosphorylation by activating the PI3K/AKT pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian Journal of Basic Medical Sciences
Iranian Journal of Basic Medical Sciences MEDICINE, RESEARCH & EXPERIMENTAL-PHARMACOLOGY & PHARMACY
CiteScore
4.00
自引率
4.50%
发文量
142
审稿时长
6-12 weeks
期刊介绍: The Iranian Journal of Basic Medical Sciences (IJBMS) is a peer-reviewed, monthly publication by Mashhad University of Medical Sciences (MUMS), Mashhad, Iran . The Journal of "IJBMS” is a modern forum for scientific communication. Data and information, useful to investigators in any discipline in basic medical sciences mainly including Anatomical Sciences, Biochemistry, Genetics, Immunology, Microbiology, Pathology, Pharmacology, Pharmaceutical Sciences, and Physiology, will be published after they have been peer reviewed. This will also include reviews and multidisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信