自然刺激下海马回路的模式分离和模式完成。

IF 3.5 2区 医学 Q1 NEUROIMAGING
Lili Sun, Siyang Li, Peng Ren, Qiuyi Liu, Zhipeng Li, Xia Liang
{"title":"自然刺激下海马回路的模式分离和模式完成。","authors":"Lili Sun,&nbsp;Siyang Li,&nbsp;Peng Ren,&nbsp;Qiuyi Liu,&nbsp;Zhipeng Li,&nbsp;Xia Liang","doi":"10.1002/hbm.70150","DOIUrl":null,"url":null,"abstract":"<p>Pattern separation and pattern completion in the hippocampus play a critical role in episodic learning and memory. However, there is limited empirical evidence supporting the role of the hippocampal circuit in these processes during complex continuous experiences. In this study, we analyzed high-resolution fMRI data from the “<i>Forrest Gump</i>” open-access dataset (16 participants) using a sliding-window temporal autocorrelation approach to investigate whether the canonical hippocampal circuit (DG-CA3-CA1-SUB) shows evidence consistent with the occurrence of pattern separation or pattern completion during a naturalistic audio movie task. Our results revealed that when processing continuous naturalistic stimuli, the DG-CA3 pair exhibited evidence consistent with the occurrence of the pattern separation process, whereas both the CA3-CA1 and CA1-SUB pairs showed evidence consistent with pattern completion. Moreover, during the latter half of the audio movie, we observed evidence consistent with a reduction in pattern completion in the CA3-CA1 pair and an increase in pattern completion in the CA1-SUB pair. Overall, these findings improve our understanding of the evidence related to the occurrence of pattern separation and pattern completion processes during natural experiences.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775762/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pattern Separation and Pattern Completion Within the Hippocampal Circuit During Naturalistic Stimuli\",\"authors\":\"Lili Sun,&nbsp;Siyang Li,&nbsp;Peng Ren,&nbsp;Qiuyi Liu,&nbsp;Zhipeng Li,&nbsp;Xia Liang\",\"doi\":\"10.1002/hbm.70150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pattern separation and pattern completion in the hippocampus play a critical role in episodic learning and memory. However, there is limited empirical evidence supporting the role of the hippocampal circuit in these processes during complex continuous experiences. In this study, we analyzed high-resolution fMRI data from the “<i>Forrest Gump</i>” open-access dataset (16 participants) using a sliding-window temporal autocorrelation approach to investigate whether the canonical hippocampal circuit (DG-CA3-CA1-SUB) shows evidence consistent with the occurrence of pattern separation or pattern completion during a naturalistic audio movie task. Our results revealed that when processing continuous naturalistic stimuli, the DG-CA3 pair exhibited evidence consistent with the occurrence of the pattern separation process, whereas both the CA3-CA1 and CA1-SUB pairs showed evidence consistent with pattern completion. Moreover, during the latter half of the audio movie, we observed evidence consistent with a reduction in pattern completion in the CA3-CA1 pair and an increase in pattern completion in the CA1-SUB pair. Overall, these findings improve our understanding of the evidence related to the occurrence of pattern separation and pattern completion processes during natural experiences.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 2\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775762/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70150\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70150","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

海马的模式分离和模式完成在情景学习和记忆中起着至关重要的作用。然而,在复杂的连续体验过程中,支持海马体回路在这些过程中的作用的经验证据有限。在这项研究中,我们使用滑动窗口时间自相关方法分析了来自《阿甘正传》开放访问数据集(16名参与者)的高分辨率fMRI数据,以研究典型海马回路(pg - ca3 - ca1 - sub)是否显示出与自然音频电影任务中模式分离或模式完成的证据一致。结果表明,在处理连续的自然刺激时,DG-CA3对表现出与模式分离过程一致的证据,而CA3-CA1和CA1-SUB对则表现出与模式完成一致的证据。此外,在音频电影的后半段,我们观察到的证据与CA3-CA1对模式完成度的减少和CA1-SUB对模式完成度的增加一致。总的来说,这些发现提高了我们对自然经验中模式分离和模式完成过程发生的证据的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pattern Separation and Pattern Completion Within the Hippocampal Circuit During Naturalistic Stimuli

Pattern Separation and Pattern Completion Within the Hippocampal Circuit During Naturalistic Stimuli

Pattern separation and pattern completion in the hippocampus play a critical role in episodic learning and memory. However, there is limited empirical evidence supporting the role of the hippocampal circuit in these processes during complex continuous experiences. In this study, we analyzed high-resolution fMRI data from the “Forrest Gump” open-access dataset (16 participants) using a sliding-window temporal autocorrelation approach to investigate whether the canonical hippocampal circuit (DG-CA3-CA1-SUB) shows evidence consistent with the occurrence of pattern separation or pattern completion during a naturalistic audio movie task. Our results revealed that when processing continuous naturalistic stimuli, the DG-CA3 pair exhibited evidence consistent with the occurrence of the pattern separation process, whereas both the CA3-CA1 and CA1-SUB pairs showed evidence consistent with pattern completion. Moreover, during the latter half of the audio movie, we observed evidence consistent with a reduction in pattern completion in the CA3-CA1 pair and an increase in pattern completion in the CA1-SUB pair. Overall, these findings improve our understanding of the evidence related to the occurrence of pattern separation and pattern completion processes during natural experiences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Brain Mapping
Human Brain Mapping 医学-核医学
CiteScore
8.30
自引率
6.20%
发文量
401
审稿时长
3-6 weeks
期刊介绍: Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged. Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信