Arbaz Rehman , Jing Wang , Hao Yue , Xiuhong Zhang , Zelong Li
{"title":"藻类有机质改变了海岸沉积物中原生生物群落结构和组装过程。","authors":"Arbaz Rehman , Jing Wang , Hao Yue , Xiuhong Zhang , Zelong Li","doi":"10.1016/j.ejop.2025.126134","DOIUrl":null,"url":null,"abstract":"<div><div>Diatom blooms are a global ecological perturbation that releases algal organic matter (AOM), significantly affecting coastal ecosystems by altering microbial community dynamics. AOM, derived from algal cell lysis, may serve as a nutrient source influencing protistan communities. However, the effects of AOM on protistan ecology, including the community structure and assembly processes, remain largely unexplored in coastal sediments. In this study, we investigated the impact of AOM on the protistan community structure using macrogenomic analysis and high-throughput sequencing. The results revealed significant shifts in the protistan diversity (alpha and beta diversity) and community composition. Phototrophs and consumers were the primary functional groups affected, with their relative abundances significantly regulated by AOM, highlighting its functional-level impacts. Moreover, AOM influenced also the protistan community assembly, increasing the proportion of deterministic processes and altering the dynamic succession within the protistan co-occurrence network. Diatom blooms act as ecological filters, reducing diversity while promoting the dominance of specific functional groups. This study bridges the gap in understanding the AOM's role in shaping the ecological succession of protists in coastal sediments, offering valuable insights into the broader ecological impact of marine diatom blooms.</div></div>","PeriodicalId":12042,"journal":{"name":"European journal of protistology","volume":"97 ","pages":"Article 126134"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algal organic matter alters protistan community structure and assembly processes in coastal sediments\",\"authors\":\"Arbaz Rehman , Jing Wang , Hao Yue , Xiuhong Zhang , Zelong Li\",\"doi\":\"10.1016/j.ejop.2025.126134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diatom blooms are a global ecological perturbation that releases algal organic matter (AOM), significantly affecting coastal ecosystems by altering microbial community dynamics. AOM, derived from algal cell lysis, may serve as a nutrient source influencing protistan communities. However, the effects of AOM on protistan ecology, including the community structure and assembly processes, remain largely unexplored in coastal sediments. In this study, we investigated the impact of AOM on the protistan community structure using macrogenomic analysis and high-throughput sequencing. The results revealed significant shifts in the protistan diversity (alpha and beta diversity) and community composition. Phototrophs and consumers were the primary functional groups affected, with their relative abundances significantly regulated by AOM, highlighting its functional-level impacts. Moreover, AOM influenced also the protistan community assembly, increasing the proportion of deterministic processes and altering the dynamic succession within the protistan co-occurrence network. Diatom blooms act as ecological filters, reducing diversity while promoting the dominance of specific functional groups. This study bridges the gap in understanding the AOM's role in shaping the ecological succession of protists in coastal sediments, offering valuable insights into the broader ecological impact of marine diatom blooms.</div></div>\",\"PeriodicalId\":12042,\"journal\":{\"name\":\"European journal of protistology\",\"volume\":\"97 \",\"pages\":\"Article 126134\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of protistology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0932473925000021\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of protistology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0932473925000021","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Algal organic matter alters protistan community structure and assembly processes in coastal sediments
Diatom blooms are a global ecological perturbation that releases algal organic matter (AOM), significantly affecting coastal ecosystems by altering microbial community dynamics. AOM, derived from algal cell lysis, may serve as a nutrient source influencing protistan communities. However, the effects of AOM on protistan ecology, including the community structure and assembly processes, remain largely unexplored in coastal sediments. In this study, we investigated the impact of AOM on the protistan community structure using macrogenomic analysis and high-throughput sequencing. The results revealed significant shifts in the protistan diversity (alpha and beta diversity) and community composition. Phototrophs and consumers were the primary functional groups affected, with their relative abundances significantly regulated by AOM, highlighting its functional-level impacts. Moreover, AOM influenced also the protistan community assembly, increasing the proportion of deterministic processes and altering the dynamic succession within the protistan co-occurrence network. Diatom blooms act as ecological filters, reducing diversity while promoting the dominance of specific functional groups. This study bridges the gap in understanding the AOM's role in shaping the ecological succession of protists in coastal sediments, offering valuable insights into the broader ecological impact of marine diatom blooms.
期刊介绍:
Articles deal with protists, unicellular organisms encountered free-living in various habitats or as parasites or used in basic research or applications. The European Journal of Protistology covers topics such as the structure and systematics of protists, their development, ecology, molecular biology and physiology. Beside publishing original articles the journal offers a forum for announcing scientific meetings. Reviews of recently published books are included as well. With its diversity of topics, the European Journal of Protistology is an essential source of information for every active protistologist and for biologists of various fields.