过渡金属配合物:对抗革兰氏阳性细菌的下一代光敏剂。

IF 3.2 4区 医学 Q3 CHEMISTRY, MEDICINAL
Future medicinal chemistry Pub Date : 2025-02-01 Epub Date: 2025-01-29 DOI:10.1080/17568919.2025.2458459
Lingmin Pei, Xianyi Yu, Xiaoyu Shan, Guanying Li
{"title":"过渡金属配合物:对抗革兰氏阳性细菌的下一代光敏剂。","authors":"Lingmin Pei, Xianyi Yu, Xiaoyu Shan, Guanying Li","doi":"10.1080/17568919.2025.2458459","DOIUrl":null,"url":null,"abstract":"<p><p>The rise of antibiotic-resistant Gram-positive bacterial infections poses a significant threat to public health, necessitating the exploration of alternative therapeutic strategies. A photosensitizer (PS) can convert energy from absorbed photon into reactive oxygen species (ROS) for damaging bacteria. This photoinactivation action bypassing conventional antibiotic mechanism is less prone to resistance development, making antibacterial photodynamic therapy (aPDT) highly efficient in combating Gram-positive bacteria. Photodynamic transition metal complexes leveraging the unique properties of metals to enhance the aPDT activity are the next-generation PS. This review provides an overview of metal-based PS for combating Gram-positive bacteria. Based on the structures, these metal-PS could be mainly classified as metal-tetrapyrrole derivatives, ruthenium complexes, iridium complexes, and zinc complexes. PS based on complexes of other transition metals such as silver, cobalt, and rhenium are also presented. Finally, we summarize the advantages and shortcomings of these metal- PS, conclude some critical aspects impacting their aPDT performances and give a perspective on their future development.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"467-484"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834427/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transition metal complexes: next-generation photosensitizers for combating Gram-positive bacteria.\",\"authors\":\"Lingmin Pei, Xianyi Yu, Xiaoyu Shan, Guanying Li\",\"doi\":\"10.1080/17568919.2025.2458459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rise of antibiotic-resistant Gram-positive bacterial infections poses a significant threat to public health, necessitating the exploration of alternative therapeutic strategies. A photosensitizer (PS) can convert energy from absorbed photon into reactive oxygen species (ROS) for damaging bacteria. This photoinactivation action bypassing conventional antibiotic mechanism is less prone to resistance development, making antibacterial photodynamic therapy (aPDT) highly efficient in combating Gram-positive bacteria. Photodynamic transition metal complexes leveraging the unique properties of metals to enhance the aPDT activity are the next-generation PS. This review provides an overview of metal-based PS for combating Gram-positive bacteria. Based on the structures, these metal-PS could be mainly classified as metal-tetrapyrrole derivatives, ruthenium complexes, iridium complexes, and zinc complexes. PS based on complexes of other transition metals such as silver, cobalt, and rhenium are also presented. Finally, we summarize the advantages and shortcomings of these metal- PS, conclude some critical aspects impacting their aPDT performances and give a perspective on their future development.</p>\",\"PeriodicalId\":12475,\"journal\":{\"name\":\"Future medicinal chemistry\",\"volume\":\" \",\"pages\":\"467-484\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834427/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17568919.2025.2458459\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2025.2458459","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

耐抗生素革兰氏阳性细菌感染的增加对公众健康构成重大威胁,需要探索替代治疗策略。光敏剂(PS)可以将吸收光子的能量转化为活性氧(ROS),用于破坏细菌。这种绕过常规抗生素机制的光失活作用不容易产生耐药性,使抗菌光动力疗法(aPDT)在对抗革兰氏阳性细菌方面非常有效。光动力过渡金属配合物利用金属的独特性质来增强aPDT活性,是下一代PS。本文综述了金属基PS对抗革兰氏阳性菌的研究进展。根据结构,这些金属- ps主要分为金属-四吡咯衍生物、钌配合物、铱配合物和锌配合物。基于其他过渡金属如银、钴和铼的配合物的PS也被提出。最后,我们总结了这些金属- PS的优缺点,总结了影响其aPDT性能的一些关键因素,并对其未来的发展进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transition metal complexes: next-generation photosensitizers for combating Gram-positive bacteria.

The rise of antibiotic-resistant Gram-positive bacterial infections poses a significant threat to public health, necessitating the exploration of alternative therapeutic strategies. A photosensitizer (PS) can convert energy from absorbed photon into reactive oxygen species (ROS) for damaging bacteria. This photoinactivation action bypassing conventional antibiotic mechanism is less prone to resistance development, making antibacterial photodynamic therapy (aPDT) highly efficient in combating Gram-positive bacteria. Photodynamic transition metal complexes leveraging the unique properties of metals to enhance the aPDT activity are the next-generation PS. This review provides an overview of metal-based PS for combating Gram-positive bacteria. Based on the structures, these metal-PS could be mainly classified as metal-tetrapyrrole derivatives, ruthenium complexes, iridium complexes, and zinc complexes. PS based on complexes of other transition metals such as silver, cobalt, and rhenium are also presented. Finally, we summarize the advantages and shortcomings of these metal- PS, conclude some critical aspects impacting their aPDT performances and give a perspective on their future development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Future medicinal chemistry
Future medicinal chemistry CHEMISTRY, MEDICINAL-
CiteScore
5.80
自引率
2.40%
发文量
118
审稿时长
4-8 weeks
期刊介绍: Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信