基于结构分析的乳腺组织工程3d打印支架的合理设计

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Sharon Kracoff-Sella, Idit Goldfracht, Asaf Silverstein, Shira Landau, Lior Debbi, Rita Beckerman, Hagit Shoyhat, Yifat Herman-Bachinsky, Gali Guterman-Ram, Inbal Michael, Rita Shuhmaher, Janette Zavin, Ronen Ben Horin, Dana Egozi, Shulamit Levenberg
{"title":"基于结构分析的乳腺组织工程3d打印支架的合理设计","authors":"Sharon Kracoff-Sella, Idit Goldfracht, Asaf Silverstein, Shira Landau, Lior Debbi, Rita Beckerman, Hagit Shoyhat, Yifat Herman-Bachinsky, Gali Guterman-Ram, Inbal Michael, Rita Shuhmaher, Janette Zavin, Ronen Ben Horin, Dana Egozi, Shulamit Levenberg","doi":"10.1088/1758-5090/adaf5a","DOIUrl":null,"url":null,"abstract":"<p><p>Best cosmetic outcomes of breast reconstruction using tissue engineering techniques rely on the scaffold architecture and material, which are currently both to be determined. This study suggests an approach for a rational design of breast-shaped scaffold architecture, in which structural analysis is implemented to predict its stiffness and adjust it to that of the native tissue. This approach can help achieve the goal of optimal scaffold architecture for breast tissue engineering. Based on specifications defined in a preliminary implantation study of a non-rationally designed scaffold, and using analytical modeling and finite element analysis, we rationally designed a polycaprolactone made, 3D-printed, highly porous, breast-shaped scaffold with a stiffness similar to the breast adipose tissue. This scaffold had an architecture of a double-shelled dome connected by pillars, with no bottom to allow direct contact of its fat graft with the host's blood vessels (shelled hemisphere adaptive design (SHAD)). To demonstrate the potential of the SHAD scaffold in breast tissue engineering, a proof-of-concept study was performed, in which SHAD scaffolds were embedded with human adipose derived mesenchymal stem cells, isolated from lipoaspirates, and implanted in nod-scid-gamma mouse model with a delayed fat graft injection. After 4 weeks of implantation, the SHAD implants were vascularized with a viable fat graft, indicating the suitability of the SHAD scaffold for breast tissue engineering.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational design of 3D-printed scaffolds for breast tissue engineering using structural analysis.\",\"authors\":\"Sharon Kracoff-Sella, Idit Goldfracht, Asaf Silverstein, Shira Landau, Lior Debbi, Rita Beckerman, Hagit Shoyhat, Yifat Herman-Bachinsky, Gali Guterman-Ram, Inbal Michael, Rita Shuhmaher, Janette Zavin, Ronen Ben Horin, Dana Egozi, Shulamit Levenberg\",\"doi\":\"10.1088/1758-5090/adaf5a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Best cosmetic outcomes of breast reconstruction using tissue engineering techniques rely on the scaffold architecture and material, which are currently both to be determined. This study suggests an approach for a rational design of breast-shaped scaffold architecture, in which structural analysis is implemented to predict its stiffness and adjust it to that of the native tissue. This approach can help achieve the goal of optimal scaffold architecture for breast tissue engineering. Based on specifications defined in a preliminary implantation study of a non-rationally designed scaffold, and using analytical modeling and finite element analysis, we rationally designed a polycaprolactone made, 3D-printed, highly porous, breast-shaped scaffold with a stiffness similar to the breast adipose tissue. This scaffold had an architecture of a double-shelled dome connected by pillars, with no bottom to allow direct contact of its fat graft with the host's blood vessels (shelled hemisphere adaptive design (SHAD)). To demonstrate the potential of the SHAD scaffold in breast tissue engineering, a proof-of-concept study was performed, in which SHAD scaffolds were embedded with human adipose derived mesenchymal stem cells, isolated from lipoaspirates, and implanted in nod-scid-gamma mouse model with a delayed fat graft injection. After 4 weeks of implantation, the SHAD implants were vascularized with a viable fat graft, indicating the suitability of the SHAD scaffold for breast tissue engineering.</p>\",\"PeriodicalId\":8964,\"journal\":{\"name\":\"Biofabrication\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofabrication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1758-5090/adaf5a\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/adaf5a","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

使用组织工程技术进行乳房重建的最佳美容效果依赖于支架结构和材料,这两者目前都有待确定。本研究提出了一种合理设计乳房状支架结构的方法,即通过结构分析来预测其刚度并使其与天然组织的刚度相适应。这种方法有助于实现乳腺组织工程最佳支架结构的目标。基于一种非合理设计支架的初步植入研究中定义的规格,并使用解析建模和有限元分析(FEA),我们合理设计了一种聚己内酯(PCL)制造、3d打印、高多孔、乳房形状的支架,其刚度与乳房脂肪组织相似。这种支架的结构是一个由柱子连接的双壳穹顶,没有底部允许脂肪移植物与宿主血管直接接触(shell Hemisphere Adaptive Design, SHAD)。为了证明SHAD支架在乳腺组织工程中的潜力,进行了一项概念验证研究,其中SHAD支架与人脂肪源性间充质干细胞(hAdMSCs)嵌入,从抽脂液中分离,并通过延迟脂肪移植注射植入Nod-Scid-Gamma (NSG)小鼠模型。植入4周后,SHAD植入物与可存活的脂肪移植物血管化,表明SHAD支架适用于乳腺组织工程。& # xD; & # xD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational design of 3D-printed scaffolds for breast tissue engineering using structural analysis.

Best cosmetic outcomes of breast reconstruction using tissue engineering techniques rely on the scaffold architecture and material, which are currently both to be determined. This study suggests an approach for a rational design of breast-shaped scaffold architecture, in which structural analysis is implemented to predict its stiffness and adjust it to that of the native tissue. This approach can help achieve the goal of optimal scaffold architecture for breast tissue engineering. Based on specifications defined in a preliminary implantation study of a non-rationally designed scaffold, and using analytical modeling and finite element analysis, we rationally designed a polycaprolactone made, 3D-printed, highly porous, breast-shaped scaffold with a stiffness similar to the breast adipose tissue. This scaffold had an architecture of a double-shelled dome connected by pillars, with no bottom to allow direct contact of its fat graft with the host's blood vessels (shelled hemisphere adaptive design (SHAD)). To demonstrate the potential of the SHAD scaffold in breast tissue engineering, a proof-of-concept study was performed, in which SHAD scaffolds were embedded with human adipose derived mesenchymal stem cells, isolated from lipoaspirates, and implanted in nod-scid-gamma mouse model with a delayed fat graft injection. After 4 weeks of implantation, the SHAD implants were vascularized with a viable fat graft, indicating the suitability of the SHAD scaffold for breast tissue engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信