基于顶点的分层格管参数与度量维数的应用。

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL
Khawlah Alhulwah, Ali N. A. Koam, Nasreen Almohanna, Ali Ahmad, Muhammad Azeem
{"title":"基于顶点的分层格管参数与度量维数的应用。","authors":"Khawlah Alhulwah,&nbsp;Ali N. A. Koam,&nbsp;Nasreen Almohanna,&nbsp;Ali Ahmad,&nbsp;Muhammad Azeem","doi":"10.1140/epje/s10189-025-00471-w","DOIUrl":null,"url":null,"abstract":"<p>Architectural metamaterials that span different length scales and are either self-similar or dissimilar to one another make up hierarchical lattices. Comparing hierarchical lattices to traditional ones reveals that they offer superior and customizable properties, which allows for a wide variety of material property manipulation and optimization. Each computer network can be represented as a graph, where nodes alternate as vertices and links are edges. The recent advanced topic of resolvability parameters of a graph involves shaping the entire structure to obtain each nodes’ specific position. In this article, we computed the metric, fault metric, and partition dimension of the hierarchal lattic tube. The application of the metric dimension is also covered in this paper.</p><p>Generalized hierarchal lattice tube</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vertex-based parameters of hierarchal lattice tube with an application of metric dimension\",\"authors\":\"Khawlah Alhulwah,&nbsp;Ali N. A. Koam,&nbsp;Nasreen Almohanna,&nbsp;Ali Ahmad,&nbsp;Muhammad Azeem\",\"doi\":\"10.1140/epje/s10189-025-00471-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Architectural metamaterials that span different length scales and are either self-similar or dissimilar to one another make up hierarchical lattices. Comparing hierarchical lattices to traditional ones reveals that they offer superior and customizable properties, which allows for a wide variety of material property manipulation and optimization. Each computer network can be represented as a graph, where nodes alternate as vertices and links are edges. The recent advanced topic of resolvability parameters of a graph involves shaping the entire structure to obtain each nodes’ specific position. In this article, we computed the metric, fault metric, and partition dimension of the hierarchal lattic tube. The application of the metric dimension is also covered in this paper.</p><p>Generalized hierarchal lattice tube</p>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epje/s10189-025-00471-w\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-025-00471-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

跨越不同长度尺度、彼此自相似或不相似的建筑超材料构成了分层格。将分层晶格与传统晶格进行比较,可以发现它们提供了优越的可定制属性,从而允许各种各样的材料属性操作和优化。每个计算机网络都可以表示为一个图,其中节点交替作为顶点,链接是边。图的可解析性参数最近的高级主题涉及到塑造整个结构以获得每个节点的具体位置。在本文中,我们计算了分层晶格管的度规、故障度规和划分维数。本文还讨论了度量量纲的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Vertex-based parameters of hierarchal lattice tube with an application of metric dimension

Vertex-based parameters of hierarchal lattice tube with an application of metric dimension

Architectural metamaterials that span different length scales and are either self-similar or dissimilar to one another make up hierarchical lattices. Comparing hierarchical lattices to traditional ones reveals that they offer superior and customizable properties, which allows for a wide variety of material property manipulation and optimization. Each computer network can be represented as a graph, where nodes alternate as vertices and links are edges. The recent advanced topic of resolvability parameters of a graph involves shaping the entire structure to obtain each nodes’ specific position. In this article, we computed the metric, fault metric, and partition dimension of the hierarchal lattic tube. The application of the metric dimension is also covered in this paper.

Generalized hierarchal lattice tube

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal E
The European Physical Journal E CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.60
自引率
5.60%
发文量
92
审稿时长
3 months
期刊介绍: EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems. Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics. Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter. Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research. The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信