Yang Wang, Na Li, Gui-Wen Huang, Yu Liu, Si-Zhe Li, Rui-Xiao Cao, Hong-Mei Xiao
{"title":"二维碳化钛(MXene)电磁波吸收的进展:机制、方法、增强和应用。","authors":"Yang Wang, Na Li, Gui-Wen Huang, Yu Liu, Si-Zhe Li, Rui-Xiao Cao, Hong-Mei Xiao","doi":"10.1002/smtd.202401982","DOIUrl":null,"url":null,"abstract":"<p>With the advent of the 5G era, there has been a marked increase in research interest concerning electromagnetic wave-absorbing materials. A critical challenge remains in improving the wave-absorbing properties of these materials while satisfying diverse application demands. MXenes, identified as prominent “emerging” 2D materials for wave absorption, offer unique advantages that are expected to drive advancements and innovations in this field. This review emphasizes the synthesis benefits provided by the unique structural characteristics of MXenes and the performance enhancements achieved through their combination with other absorbing materials. Material requirements, synthesis approaches, and conceptual frameworks are integrated to underscore these advantages. The study provides a thorough analysis of MXene-absorbing composites, going beyond basic classification to address preparation and modification processes affecting the absorption properties of MXenes and their composites. Attention is directed to synthesis techniques, structural design principles, and their influence on composite performance. Additionally, the potential applications of MXenes in electromagnetic wave absorbing devices are summarized. The review concludes by addressing the challenges currently confronting MXene materials and outlining expected developmental trends, aiming to offer guidance for subsequent research in this domain.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":"9 7","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in 2D Titanium Carbide (MXene) for Electromagnetic Wave Absorption: Mechanisms, Methods, Enhancements, and Applications\",\"authors\":\"Yang Wang, Na Li, Gui-Wen Huang, Yu Liu, Si-Zhe Li, Rui-Xiao Cao, Hong-Mei Xiao\",\"doi\":\"10.1002/smtd.202401982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the advent of the 5G era, there has been a marked increase in research interest concerning electromagnetic wave-absorbing materials. A critical challenge remains in improving the wave-absorbing properties of these materials while satisfying diverse application demands. MXenes, identified as prominent “emerging” 2D materials for wave absorption, offer unique advantages that are expected to drive advancements and innovations in this field. This review emphasizes the synthesis benefits provided by the unique structural characteristics of MXenes and the performance enhancements achieved through their combination with other absorbing materials. Material requirements, synthesis approaches, and conceptual frameworks are integrated to underscore these advantages. The study provides a thorough analysis of MXene-absorbing composites, going beyond basic classification to address preparation and modification processes affecting the absorption properties of MXenes and their composites. Attention is directed to synthesis techniques, structural design principles, and their influence on composite performance. Additionally, the potential applications of MXenes in electromagnetic wave absorbing devices are summarized. The review concludes by addressing the challenges currently confronting MXene materials and outlining expected developmental trends, aiming to offer guidance for subsequent research in this domain.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\"9 7\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202401982\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202401982","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Advancements in 2D Titanium Carbide (MXene) for Electromagnetic Wave Absorption: Mechanisms, Methods, Enhancements, and Applications
With the advent of the 5G era, there has been a marked increase in research interest concerning electromagnetic wave-absorbing materials. A critical challenge remains in improving the wave-absorbing properties of these materials while satisfying diverse application demands. MXenes, identified as prominent “emerging” 2D materials for wave absorption, offer unique advantages that are expected to drive advancements and innovations in this field. This review emphasizes the synthesis benefits provided by the unique structural characteristics of MXenes and the performance enhancements achieved through their combination with other absorbing materials. Material requirements, synthesis approaches, and conceptual frameworks are integrated to underscore these advantages. The study provides a thorough analysis of MXene-absorbing composites, going beyond basic classification to address preparation and modification processes affecting the absorption properties of MXenes and their composites. Attention is directed to synthesis techniques, structural design principles, and their influence on composite performance. Additionally, the potential applications of MXenes in electromagnetic wave absorbing devices are summarized. The review concludes by addressing the challenges currently confronting MXene materials and outlining expected developmental trends, aiming to offer guidance for subsequent research in this domain.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.