外源褪黑素对铜胁迫下酿酒酵母发酵性能的影响

IF 8.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Mengyuan Wei, Zixian Zhao, Zhiluo Que, Bohan Li, Jinyu Yang, Wenguang Jiang, Yulin Fang, Xiangyu Sun
{"title":"外源褪黑素对铜胁迫下酿酒酵母发酵性能的影响","authors":"Mengyuan Wei,&nbsp;Zixian Zhao,&nbsp;Zhiluo Que,&nbsp;Bohan Li,&nbsp;Jinyu Yang,&nbsp;Wenguang Jiang,&nbsp;Yulin Fang,&nbsp;Xiangyu Sun","doi":"10.1111/jpi.70032","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Melatonin is involved in biological adverse stress response and enhances the ability of yeast to adapt to adverse conditions. This study investigated the mechanism of exogenous melatonin addition to <i>Saccharomyces cerevisiae</i> (<i>S. cerevisiae</i>) under copper stress. The results indicated that the addition of excessive exogenous melatonin (100 mg/L) led to the accumulation of maltose and trehalose in <i>S. cerevisiae</i>, which slowed glucose metabolism and further suppressed the alcoholic fermentation process. The cell morphology, cell wall structure, and the organelle morphology of <i>S. cerevisiae</i> EC1118 under copper stress improved with the addition of 1 μg/mL of melatonin. The results of gas chromatography–mass spectrometry (GC–MS) indicated that melatonin induced more creamy and waxy flavors in the fermentation broth, whereas excessive melatonin led to the production of unpleasant fats with a coconut oil smell. The metabolomics results showed that melatonin promoted the synthesis of Cup1p and increased copper resistance by upregulating the sulfur-containing amino acids methionine and cysteine. Furthermore, lipid peroxidation and DNA damage were alleviated through the upregulation of AFMK, which protected the integrity of the cell membrane, thereby the physiological mechanism of alleviating copper stress was achieved. Overall, moderate amounts of melatonin reduced the contraction of cells caused by copper stress and promoted the production of flavor substances. This study holds theoretical and practical importance for wine making and industrial wine production under copper stress.</p></div>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"77 2","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of Exogenous Melatonin to Alleviate the Fermentation Performance of Saccharomyces cerevisiae Under Copper Stress\",\"authors\":\"Mengyuan Wei,&nbsp;Zixian Zhao,&nbsp;Zhiluo Que,&nbsp;Bohan Li,&nbsp;Jinyu Yang,&nbsp;Wenguang Jiang,&nbsp;Yulin Fang,&nbsp;Xiangyu Sun\",\"doi\":\"10.1111/jpi.70032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Melatonin is involved in biological adverse stress response and enhances the ability of yeast to adapt to adverse conditions. This study investigated the mechanism of exogenous melatonin addition to <i>Saccharomyces cerevisiae</i> (<i>S. cerevisiae</i>) under copper stress. The results indicated that the addition of excessive exogenous melatonin (100 mg/L) led to the accumulation of maltose and trehalose in <i>S. cerevisiae</i>, which slowed glucose metabolism and further suppressed the alcoholic fermentation process. The cell morphology, cell wall structure, and the organelle morphology of <i>S. cerevisiae</i> EC1118 under copper stress improved with the addition of 1 μg/mL of melatonin. The results of gas chromatography–mass spectrometry (GC–MS) indicated that melatonin induced more creamy and waxy flavors in the fermentation broth, whereas excessive melatonin led to the production of unpleasant fats with a coconut oil smell. The metabolomics results showed that melatonin promoted the synthesis of Cup1p and increased copper resistance by upregulating the sulfur-containing amino acids methionine and cysteine. Furthermore, lipid peroxidation and DNA damage were alleviated through the upregulation of AFMK, which protected the integrity of the cell membrane, thereby the physiological mechanism of alleviating copper stress was achieved. Overall, moderate amounts of melatonin reduced the contraction of cells caused by copper stress and promoted the production of flavor substances. This study holds theoretical and practical importance for wine making and industrial wine production under copper stress.</p></div>\",\"PeriodicalId\":198,\"journal\":{\"name\":\"Journal of Pineal Research\",\"volume\":\"77 2\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pineal Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jpi.70032\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pineal Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpi.70032","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

褪黑素参与生物逆境应激反应,增强酵母适应逆境的能力。本研究探讨了铜胁迫下外源褪黑素对酿酒酵母(Saccharomyces cerevisiae)的作用机制。结果表明,过量添加外源褪黑素(100 mg/L)可导致酿酒酵母体内麦芽糖和海藻糖积累,减缓葡萄糖代谢,进一步抑制酒精发酵过程。添加1 μg/mL褪黑素可改善铜胁迫下酿酒酵母EC1118的细胞形态、细胞壁结构和细胞器形态。气相色谱-质谱分析(GC-MS)结果表明,褪黑素在发酵液中引起更多的奶油和蜡味,而过量的褪黑素导致产生令人不快的脂肪和椰子油气味。代谢组学研究结果表明,褪黑素通过上调含硫氨基酸蛋氨酸和半胱氨酸,促进了Cup1p的合成,增加了铜抗性。此外,通过上调AFMK可减轻脂质过氧化和DNA损伤,保护了细胞膜的完整性,从而达到减轻铜胁迫的生理机制。总的来说,适量的褪黑激素减少了由铜应激引起的细胞收缩,促进了风味物质的产生。本研究对铜胁迫下的葡萄酒酿造和工业葡萄酒生产具有重要的理论和实践意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanism of Exogenous Melatonin to Alleviate the Fermentation Performance of Saccharomyces cerevisiae Under Copper Stress

Melatonin is involved in biological adverse stress response and enhances the ability of yeast to adapt to adverse conditions. This study investigated the mechanism of exogenous melatonin addition to Saccharomyces cerevisiae (S. cerevisiae) under copper stress. The results indicated that the addition of excessive exogenous melatonin (100 mg/L) led to the accumulation of maltose and trehalose in S. cerevisiae, which slowed glucose metabolism and further suppressed the alcoholic fermentation process. The cell morphology, cell wall structure, and the organelle morphology of S. cerevisiae EC1118 under copper stress improved with the addition of 1 μg/mL of melatonin. The results of gas chromatography–mass spectrometry (GC–MS) indicated that melatonin induced more creamy and waxy flavors in the fermentation broth, whereas excessive melatonin led to the production of unpleasant fats with a coconut oil smell. The metabolomics results showed that melatonin promoted the synthesis of Cup1p and increased copper resistance by upregulating the sulfur-containing amino acids methionine and cysteine. Furthermore, lipid peroxidation and DNA damage were alleviated through the upregulation of AFMK, which protected the integrity of the cell membrane, thereby the physiological mechanism of alleviating copper stress was achieved. Overall, moderate amounts of melatonin reduced the contraction of cells caused by copper stress and promoted the production of flavor substances. This study holds theoretical and practical importance for wine making and industrial wine production under copper stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pineal Research
Journal of Pineal Research 医学-内分泌学与代谢
CiteScore
17.70
自引率
4.90%
发文量
66
审稿时长
1 months
期刊介绍: The Journal of Pineal Research welcomes original scientific research on the pineal gland and melatonin in vertebrates, as well as the biological functions of melatonin in non-vertebrates, plants, and microorganisms. Criteria for publication include scientific importance, novelty, timeliness, and clarity of presentation. The journal considers experimental data that challenge current thinking and welcomes case reports contributing to understanding the pineal gland and melatonin research. Its aim is to serve researchers in all disciplines related to the pineal gland and melatonin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信