Mengyuan Wei, Zixian Zhao, Zhiluo Que, Bohan Li, Jinyu Yang, Wenguang Jiang, Yulin Fang, Xiangyu Sun
{"title":"外源褪黑素对铜胁迫下酿酒酵母发酵性能的影响","authors":"Mengyuan Wei, Zixian Zhao, Zhiluo Que, Bohan Li, Jinyu Yang, Wenguang Jiang, Yulin Fang, Xiangyu Sun","doi":"10.1111/jpi.70032","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Melatonin is involved in biological adverse stress response and enhances the ability of yeast to adapt to adverse conditions. This study investigated the mechanism of exogenous melatonin addition to <i>Saccharomyces cerevisiae</i> (<i>S. cerevisiae</i>) under copper stress. The results indicated that the addition of excessive exogenous melatonin (100 mg/L) led to the accumulation of maltose and trehalose in <i>S. cerevisiae</i>, which slowed glucose metabolism and further suppressed the alcoholic fermentation process. The cell morphology, cell wall structure, and the organelle morphology of <i>S. cerevisiae</i> EC1118 under copper stress improved with the addition of 1 μg/mL of melatonin. The results of gas chromatography–mass spectrometry (GC–MS) indicated that melatonin induced more creamy and waxy flavors in the fermentation broth, whereas excessive melatonin led to the production of unpleasant fats with a coconut oil smell. The metabolomics results showed that melatonin promoted the synthesis of Cup1p and increased copper resistance by upregulating the sulfur-containing amino acids methionine and cysteine. Furthermore, lipid peroxidation and DNA damage were alleviated through the upregulation of AFMK, which protected the integrity of the cell membrane, thereby the physiological mechanism of alleviating copper stress was achieved. Overall, moderate amounts of melatonin reduced the contraction of cells caused by copper stress and promoted the production of flavor substances. This study holds theoretical and practical importance for wine making and industrial wine production under copper stress.</p></div>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"77 2","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of Exogenous Melatonin to Alleviate the Fermentation Performance of Saccharomyces cerevisiae Under Copper Stress\",\"authors\":\"Mengyuan Wei, Zixian Zhao, Zhiluo Que, Bohan Li, Jinyu Yang, Wenguang Jiang, Yulin Fang, Xiangyu Sun\",\"doi\":\"10.1111/jpi.70032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Melatonin is involved in biological adverse stress response and enhances the ability of yeast to adapt to adverse conditions. This study investigated the mechanism of exogenous melatonin addition to <i>Saccharomyces cerevisiae</i> (<i>S. cerevisiae</i>) under copper stress. The results indicated that the addition of excessive exogenous melatonin (100 mg/L) led to the accumulation of maltose and trehalose in <i>S. cerevisiae</i>, which slowed glucose metabolism and further suppressed the alcoholic fermentation process. The cell morphology, cell wall structure, and the organelle morphology of <i>S. cerevisiae</i> EC1118 under copper stress improved with the addition of 1 μg/mL of melatonin. The results of gas chromatography–mass spectrometry (GC–MS) indicated that melatonin induced more creamy and waxy flavors in the fermentation broth, whereas excessive melatonin led to the production of unpleasant fats with a coconut oil smell. The metabolomics results showed that melatonin promoted the synthesis of Cup1p and increased copper resistance by upregulating the sulfur-containing amino acids methionine and cysteine. Furthermore, lipid peroxidation and DNA damage were alleviated through the upregulation of AFMK, which protected the integrity of the cell membrane, thereby the physiological mechanism of alleviating copper stress was achieved. Overall, moderate amounts of melatonin reduced the contraction of cells caused by copper stress and promoted the production of flavor substances. This study holds theoretical and practical importance for wine making and industrial wine production under copper stress.</p></div>\",\"PeriodicalId\":198,\"journal\":{\"name\":\"Journal of Pineal Research\",\"volume\":\"77 2\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pineal Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jpi.70032\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pineal Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpi.70032","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Mechanism of Exogenous Melatonin to Alleviate the Fermentation Performance of Saccharomyces cerevisiae Under Copper Stress
Melatonin is involved in biological adverse stress response and enhances the ability of yeast to adapt to adverse conditions. This study investigated the mechanism of exogenous melatonin addition to Saccharomyces cerevisiae (S. cerevisiae) under copper stress. The results indicated that the addition of excessive exogenous melatonin (100 mg/L) led to the accumulation of maltose and trehalose in S. cerevisiae, which slowed glucose metabolism and further suppressed the alcoholic fermentation process. The cell morphology, cell wall structure, and the organelle morphology of S. cerevisiae EC1118 under copper stress improved with the addition of 1 μg/mL of melatonin. The results of gas chromatography–mass spectrometry (GC–MS) indicated that melatonin induced more creamy and waxy flavors in the fermentation broth, whereas excessive melatonin led to the production of unpleasant fats with a coconut oil smell. The metabolomics results showed that melatonin promoted the synthesis of Cup1p and increased copper resistance by upregulating the sulfur-containing amino acids methionine and cysteine. Furthermore, lipid peroxidation and DNA damage were alleviated through the upregulation of AFMK, which protected the integrity of the cell membrane, thereby the physiological mechanism of alleviating copper stress was achieved. Overall, moderate amounts of melatonin reduced the contraction of cells caused by copper stress and promoted the production of flavor substances. This study holds theoretical and practical importance for wine making and industrial wine production under copper stress.
期刊介绍:
The Journal of Pineal Research welcomes original scientific research on the pineal gland and melatonin in vertebrates, as well as the biological functions of melatonin in non-vertebrates, plants, and microorganisms. Criteria for publication include scientific importance, novelty, timeliness, and clarity of presentation. The journal considers experimental data that challenge current thinking and welcomes case reports contributing to understanding the pineal gland and melatonin research. Its aim is to serve researchers in all disciplines related to the pineal gland and melatonin.