具有粒子间结合力的球形植绒模型的均匀位置对准估计

IF 3.8 2区 数学 Q1 MATHEMATICS, APPLIED
Sun-Ho Choi , Dohyun Kwon , Hyowon Seo
{"title":"具有粒子间结合力的球形植绒模型的均匀位置对准估计","authors":"Sun-Ho Choi ,&nbsp;Dohyun Kwon ,&nbsp;Hyowon Seo","doi":"10.1016/j.cnsns.2025.108622","DOIUrl":null,"url":null,"abstract":"<div><div>We present a sufficient condition for asymptotic rendezvous of a Cucker-Smale type model on the unit sphere with an inter-particle bonding force. This second-order dynamical system includes a rotation operator defined on the surface of the three-dimensional unit sphere, and we derive an exponential decay estimate for the diameter of agent positions and demonstrate time-asymptotic flocking for a class of initial data. The sufficient condition for the initial data depends only on the communication rate and inter-particle bonding parameter, independent of the number of agents. The lack of momentum conservation and the presence of a curved space domain pose challenges in applying standard methodologies used in the original Cucker-Smale model. To address this and obtain a uniform position alignment estimate, we employ an energy dissipation property of this system and a transformation from the Cucker-Smale type flocking model into an inhomogeneous system in which the solution contains the position and velocity diameters. The coefficients of the transformed system are controlled by the communication rate and a uniform upper bound of velocities obtained by the energy dissipation.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"143 ","pages":"Article 108622"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform position alignment estimate of a spherical flocking model with inter-particle bonding forces\",\"authors\":\"Sun-Ho Choi ,&nbsp;Dohyun Kwon ,&nbsp;Hyowon Seo\",\"doi\":\"10.1016/j.cnsns.2025.108622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a sufficient condition for asymptotic rendezvous of a Cucker-Smale type model on the unit sphere with an inter-particle bonding force. This second-order dynamical system includes a rotation operator defined on the surface of the three-dimensional unit sphere, and we derive an exponential decay estimate for the diameter of agent positions and demonstrate time-asymptotic flocking for a class of initial data. The sufficient condition for the initial data depends only on the communication rate and inter-particle bonding parameter, independent of the number of agents. The lack of momentum conservation and the presence of a curved space domain pose challenges in applying standard methodologies used in the original Cucker-Smale model. To address this and obtain a uniform position alignment estimate, we employ an energy dissipation property of this system and a transformation from the Cucker-Smale type flocking model into an inhomogeneous system in which the solution contains the position and velocity diameters. The coefficients of the transformed system are controlled by the communication rate and a uniform upper bound of velocities obtained by the energy dissipation.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"143 \",\"pages\":\"Article 108622\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570425000334\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570425000334","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

给出了具有粒子间作用力的单位球上cucker - small型模型渐近交会的一个充分条件。该二阶动力系统包含一个定义在三维单位球表面上的旋转算子,我们导出了智能体位置直径的指数衰减估计,并证明了一类初始数据的时间渐近聚群。初始数据的充分条件仅取决于通信速率和粒子间键合参数,而与agent的数量无关。动量守恒的缺乏和弯曲空间域的存在对应用原始cucker - small模型中使用的标准方法提出了挑战。为了解决这一问题并获得一致的位置对准估计,我们利用了该系统的能量耗散特性,并将cucker - small型群集模型转化为求解包含位置直径和速度直径的非均匀系统。转换后的系统的系数由通信速率和由能量耗散得到的均匀速度上界来控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform position alignment estimate of a spherical flocking model with inter-particle bonding forces
We present a sufficient condition for asymptotic rendezvous of a Cucker-Smale type model on the unit sphere with an inter-particle bonding force. This second-order dynamical system includes a rotation operator defined on the surface of the three-dimensional unit sphere, and we derive an exponential decay estimate for the diameter of agent positions and demonstrate time-asymptotic flocking for a class of initial data. The sufficient condition for the initial data depends only on the communication rate and inter-particle bonding parameter, independent of the number of agents. The lack of momentum conservation and the presence of a curved space domain pose challenges in applying standard methodologies used in the original Cucker-Smale model. To address this and obtain a uniform position alignment estimate, we employ an energy dissipation property of this system and a transformation from the Cucker-Smale type flocking model into an inhomogeneous system in which the solution contains the position and velocity diameters. The coefficients of the transformed system are controlled by the communication rate and a uniform upper bound of velocities obtained by the energy dissipation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信