用x射线粉末衍射分析波特兰熟料中的多晶和小相定量:解决挑战和外来离子的影响

IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Paulo R. de Matos , José S. Andrade Neto , Carlos E.M. Campos , Ruben Snellings , Robert E. Dinnebier , Ana P. Kirchheim
{"title":"用x射线粉末衍射分析波特兰熟料中的多晶和小相定量:解决挑战和外来离子的影响","authors":"Paulo R. de Matos ,&nbsp;José S. Andrade Neto ,&nbsp;Carlos E.M. Campos ,&nbsp;Ruben Snellings ,&nbsp;Robert E. Dinnebier ,&nbsp;Ana P. Kirchheim","doi":"10.1016/j.cemconres.2025.107801","DOIUrl":null,"url":null,"abstract":"<div><div>A comprehensive investigation of the phase composition of eight commercial clinkers was conducted through state-of-the-art synchrotron (SXRD) and laboratory (LXRD) X-ray diffraction, and supporting techniques. Challenges involved in polymorph and minor phase quantification, and the effects of foreign ions on the clinker chemistry were addressed. SXRD yielded higher C<sub>3</sub>S and lower C<sub>2</sub>S contents than LXRD, besides higher C<sub>3</sub>S M<sub>3</sub>. Visual identification of C<sub>3</sub>S predominant polymorphs did not always match the Rietveld results for LXRD. Using orthorhombic-C<sub>3</sub>A in the refinement of samples that did not have this polymorph led to an underestimation of C<sub>4</sub>AF and α′<sub>H</sub>-C<sub>2</sub>S. Axial divergence made the quantification of β-C<sub>2</sub>S inaccurate for non-monochromatic LXRD. C<sub>3</sub>S formation was governed by the sulfate/magnesium ratio and Na<sub>2</sub>O<sub>eq</sub> content rather than LSF, while C<sub>3</sub>S polymorphism was governed by the sulfate/magnesium + alkali ratio. Optimal chemistry ranges were proposed for maximizing C<sub>3</sub>S formation. C<sub>3</sub>A polymorphism was generally controlled by the sulfate/alkali ratio.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"190 ","pages":"Article 107801"},"PeriodicalIF":10.9000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymorph and minor phase quantification in Portland clinker by X-ray powder diffraction analysis: Addressing challenges and foreign ion effects\",\"authors\":\"Paulo R. de Matos ,&nbsp;José S. Andrade Neto ,&nbsp;Carlos E.M. Campos ,&nbsp;Ruben Snellings ,&nbsp;Robert E. Dinnebier ,&nbsp;Ana P. Kirchheim\",\"doi\":\"10.1016/j.cemconres.2025.107801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A comprehensive investigation of the phase composition of eight commercial clinkers was conducted through state-of-the-art synchrotron (SXRD) and laboratory (LXRD) X-ray diffraction, and supporting techniques. Challenges involved in polymorph and minor phase quantification, and the effects of foreign ions on the clinker chemistry were addressed. SXRD yielded higher C<sub>3</sub>S and lower C<sub>2</sub>S contents than LXRD, besides higher C<sub>3</sub>S M<sub>3</sub>. Visual identification of C<sub>3</sub>S predominant polymorphs did not always match the Rietveld results for LXRD. Using orthorhombic-C<sub>3</sub>A in the refinement of samples that did not have this polymorph led to an underestimation of C<sub>4</sub>AF and α′<sub>H</sub>-C<sub>2</sub>S. Axial divergence made the quantification of β-C<sub>2</sub>S inaccurate for non-monochromatic LXRD. C<sub>3</sub>S formation was governed by the sulfate/magnesium ratio and Na<sub>2</sub>O<sub>eq</sub> content rather than LSF, while C<sub>3</sub>S polymorphism was governed by the sulfate/magnesium + alkali ratio. Optimal chemistry ranges were proposed for maximizing C<sub>3</sub>S formation. C<sub>3</sub>A polymorphism was generally controlled by the sulfate/alkali ratio.</div></div>\",\"PeriodicalId\":266,\"journal\":{\"name\":\"Cement and Concrete Research\",\"volume\":\"190 \",\"pages\":\"Article 107801\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008884625000201\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884625000201","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

通过最先进的同步加速器(SXRD)和实验室(LXRD) x射线衍射以及配套技术,对8种商业熟料的物相组成进行了全面的研究。讨论了多晶型和小相定量的挑战,以及外来离子对熟料化学的影响。SXRD的C3S含量高于LXRD, C2S含量低于LXRD,且C3S M3较高。C3S优势多态性的目视识别并不总是与LXRD的Rietveld结果相匹配。在没有这种多态性的样品中使用正交- c3a会导致C4AF和α ' H-C2S的低估。轴向发散使得非单色LXRD对β-C2S的定量不准。C3S的形成受硫酸盐/镁比和Na2Oeq含量的影响,而不受LSF的影响,而C3S的多态性受硫酸盐/镁+碱比的影响。提出了使C3S形成最大化的最佳化学范围。C3A多态性一般受硫酸盐/碱比控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polymorph and minor phase quantification in Portland clinker by X-ray powder diffraction analysis: Addressing challenges and foreign ion effects
A comprehensive investigation of the phase composition of eight commercial clinkers was conducted through state-of-the-art synchrotron (SXRD) and laboratory (LXRD) X-ray diffraction, and supporting techniques. Challenges involved in polymorph and minor phase quantification, and the effects of foreign ions on the clinker chemistry were addressed. SXRD yielded higher C3S and lower C2S contents than LXRD, besides higher C3S M3. Visual identification of C3S predominant polymorphs did not always match the Rietveld results for LXRD. Using orthorhombic-C3A in the refinement of samples that did not have this polymorph led to an underestimation of C4AF and α′H-C2S. Axial divergence made the quantification of β-C2S inaccurate for non-monochromatic LXRD. C3S formation was governed by the sulfate/magnesium ratio and Na2Oeq content rather than LSF, while C3S polymorphism was governed by the sulfate/magnesium + alkali ratio. Optimal chemistry ranges were proposed for maximizing C3S formation. C3A polymorphism was generally controlled by the sulfate/alkali ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cement and Concrete Research
Cement and Concrete Research 工程技术-材料科学:综合
CiteScore
20.90
自引率
12.30%
发文量
318
审稿时长
53 days
期刊介绍: Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信