Yan Yan Grisan Qiu, Dominik Brandstetter, Simone Mearini, Daniel Baranowski, Iulia Cojocariu, Matteo Jugovac, Giovanni Zamborlini, Pierluigi Gargiani, Manuel Valvidares, Andreas Windischbacher, Peter Puschnig, Vitaliy Feyer, Claus Michael Schneider
{"title":"二维金属有机骨架中构象驱动的镍氧化还原态和磁性","authors":"Yan Yan Grisan Qiu, Dominik Brandstetter, Simone Mearini, Daniel Baranowski, Iulia Cojocariu, Matteo Jugovac, Giovanni Zamborlini, Pierluigi Gargiani, Manuel Valvidares, Andreas Windischbacher, Peter Puschnig, Vitaliy Feyer, Claus Michael Schneider","doi":"10.1002/adfm.202418186","DOIUrl":null,"url":null,"abstract":"<p>2D metal–organic frameworks (2D MOFs) attract considerable attention because of their versatile properties and as potential candidates for single-atom catalysis, high-density information storage media or molecular electronics and spintronics devices. Their unique characteristics arise from an intricate interplay between the metal center, the surrounding ligands and the underlying substrate. Here, the intrinsic magnetic and electronic properties of a single-layer MOF on graphene is investigated with a combination of spectroscopic techniques and theoretical modeling. Taking advantage of the weak interaction between the MOF and graphene substrate, it is specifically focused on the influence of the coordination environment on these properties. Notably, two distinct coordination configurations are observed for the transition metal centers within the 2D MOF, and clarify how axial distortions in the ligand field affect the hybridization between the Ni 3d states and the π-symmetric molecular orbitals of 7,7,8,8-tetracyanoquinodimethane ligands, leading to the coexistence of two Ni redox states with different spin configurations. Furthermore, the transition from a nearly free-standing MOF is examined to metal-supported frameworks, elucidating the impact of substrate interactions on the electronic and magnetic properties. The findings advance the understanding of MOFs and offer insights into developing functional materials with tailored magnetic and electronic properties.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 13","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202418186","citationCount":"0","resultStr":"{\"title\":\"Conformation-Driven Nickel Redox States and Magnetism in 2D Metal–organic Frameworks\",\"authors\":\"Yan Yan Grisan Qiu, Dominik Brandstetter, Simone Mearini, Daniel Baranowski, Iulia Cojocariu, Matteo Jugovac, Giovanni Zamborlini, Pierluigi Gargiani, Manuel Valvidares, Andreas Windischbacher, Peter Puschnig, Vitaliy Feyer, Claus Michael Schneider\",\"doi\":\"10.1002/adfm.202418186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>2D metal–organic frameworks (2D MOFs) attract considerable attention because of their versatile properties and as potential candidates for single-atom catalysis, high-density information storage media or molecular electronics and spintronics devices. Their unique characteristics arise from an intricate interplay between the metal center, the surrounding ligands and the underlying substrate. Here, the intrinsic magnetic and electronic properties of a single-layer MOF on graphene is investigated with a combination of spectroscopic techniques and theoretical modeling. Taking advantage of the weak interaction between the MOF and graphene substrate, it is specifically focused on the influence of the coordination environment on these properties. Notably, two distinct coordination configurations are observed for the transition metal centers within the 2D MOF, and clarify how axial distortions in the ligand field affect the hybridization between the Ni 3d states and the π-symmetric molecular orbitals of 7,7,8,8-tetracyanoquinodimethane ligands, leading to the coexistence of two Ni redox states with different spin configurations. Furthermore, the transition from a nearly free-standing MOF is examined to metal-supported frameworks, elucidating the impact of substrate interactions on the electronic and magnetic properties. The findings advance the understanding of MOFs and offer insights into developing functional materials with tailored magnetic and electronic properties.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 13\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202418186\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202418186\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202418186","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Conformation-Driven Nickel Redox States and Magnetism in 2D Metal–organic Frameworks
2D metal–organic frameworks (2D MOFs) attract considerable attention because of their versatile properties and as potential candidates for single-atom catalysis, high-density information storage media or molecular electronics and spintronics devices. Their unique characteristics arise from an intricate interplay between the metal center, the surrounding ligands and the underlying substrate. Here, the intrinsic magnetic and electronic properties of a single-layer MOF on graphene is investigated with a combination of spectroscopic techniques and theoretical modeling. Taking advantage of the weak interaction between the MOF and graphene substrate, it is specifically focused on the influence of the coordination environment on these properties. Notably, two distinct coordination configurations are observed for the transition metal centers within the 2D MOF, and clarify how axial distortions in the ligand field affect the hybridization between the Ni 3d states and the π-symmetric molecular orbitals of 7,7,8,8-tetracyanoquinodimethane ligands, leading to the coexistence of two Ni redox states with different spin configurations. Furthermore, the transition from a nearly free-standing MOF is examined to metal-supported frameworks, elucidating the impact of substrate interactions on the electronic and magnetic properties. The findings advance the understanding of MOFs and offer insights into developing functional materials with tailored magnetic and electronic properties.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.