三金属aucu核pt壳纳米颗粒晶格应变的合成控制

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-01-30 DOI:10.1039/D4NR04424J
Just P. Jonasse, Marta Perxés Perich, Savannah J. Turner and Jessi E. S. van der Hoeven
{"title":"三金属aucu核pt壳纳米颗粒晶格应变的合成控制","authors":"Just P. Jonasse, Marta Perxés Perich, Savannah J. Turner and Jessi E. S. van der Hoeven","doi":"10.1039/D4NR04424J","DOIUrl":null,"url":null,"abstract":"<p >Core–shell nanoparticles can exhibit strongly enhanced performances in electro-, photo- and thermal catalysis. Lattice strain plays a key role in this and is induced by the mismatch between the crystal structure of the core and the shell metal. However, investigating the impact of lattice strain has been challenging due to the lack of a material system in which lattice strain can be controlled systematically, hampering further progress in the field of core–shell catalysis. In this work, we achieve such a core–shell nanoparticle system through the colloidal synthesis of trimetallic Pt-shell Au<small><sub>1−<em>x</em></sub></small>Cu<small><sub><em>x</em></sub></small>-core nanoparticles. Our seed-mediated growth methodology yields well-defined Au<small><sub>1−<em>x</em></sub></small>Cu<small><sub><em>x</em></sub></small>-cores, tunable in composition from 0 at% Cu to 77 at% Cu, and monodisperse in size. Subsequent overgrowth results in uniform, epitaxially grown Pt-shells with a controlled thickness of ∼3 atomic layers. By employing a multi-technique characterization strategy combining X-ray diffraction, electron diffraction and aberration corrected electron microscopy, we unravel the atomic structure of the trimetallic system on a single nanoparticle-, ensemble- and bulk scale level, and we unambiguously demonstrate the controlled variation of strain in the Pt-shell from −3.62% compressive-, to +3.79% tensile strain, while retaining full control over all other structural characteristics of the system.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 12","pages":" 7100-7113"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/nr/d4nr04424j?page=search","citationCount":"0","resultStr":"{\"title\":\"Synthetic control over lattice strain in trimetallic AuCu-core Pt-shell nanoparticles†\",\"authors\":\"Just P. Jonasse, Marta Perxés Perich, Savannah J. Turner and Jessi E. S. van der Hoeven\",\"doi\":\"10.1039/D4NR04424J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Core–shell nanoparticles can exhibit strongly enhanced performances in electro-, photo- and thermal catalysis. Lattice strain plays a key role in this and is induced by the mismatch between the crystal structure of the core and the shell metal. However, investigating the impact of lattice strain has been challenging due to the lack of a material system in which lattice strain can be controlled systematically, hampering further progress in the field of core–shell catalysis. In this work, we achieve such a core–shell nanoparticle system through the colloidal synthesis of trimetallic Pt-shell Au<small><sub>1−<em>x</em></sub></small>Cu<small><sub><em>x</em></sub></small>-core nanoparticles. Our seed-mediated growth methodology yields well-defined Au<small><sub>1−<em>x</em></sub></small>Cu<small><sub><em>x</em></sub></small>-cores, tunable in composition from 0 at% Cu to 77 at% Cu, and monodisperse in size. Subsequent overgrowth results in uniform, epitaxially grown Pt-shells with a controlled thickness of ∼3 atomic layers. By employing a multi-technique characterization strategy combining X-ray diffraction, electron diffraction and aberration corrected electron microscopy, we unravel the atomic structure of the trimetallic system on a single nanoparticle-, ensemble- and bulk scale level, and we unambiguously demonstrate the controlled variation of strain in the Pt-shell from −3.62% compressive-, to +3.79% tensile strain, while retaining full control over all other structural characteristics of the system.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 12\",\"pages\":\" 7100-7113\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/nr/d4nr04424j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr04424j\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr04424j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

核壳纳米粒子在电催化、光催化和热催化方面表现出很强的增强性能。晶格应变在这一过程中起着关键作用,它是由芯金属和壳金属的晶体结构不匹配引起的。然而,由于缺乏可以系统控制晶格应变的材料系统,研究晶格应变的影响一直具有挑战性,阻碍了核-壳催化领域的进一步进展。在这项工作中,我们通过胶体合成三金属pt -壳au1 - xcux -核纳米颗粒来实现这样一个核-壳纳米颗粒体系。我们的种子介导生长方法产生了定义明确的au1 - xcux核,其组成可在0 -% Cu到77 -% Cu之间进行调节,并且尺寸是单分散的。随后的过度生长导致均匀的,外延生长的pt壳层厚度控制在~3原子层。通过采用结合x射线衍射、电子衍射和像差校正电子显微镜的多技术表征策略,我们在单个纳米颗粒、系综和体尺度上揭示了三金属体系的原子结构,并且我们明确地证明了pt壳中的应变从- 3.62%压缩应变到+ 3.79%拉伸应变的可控变化,同时保留了对系统所有其他结构特征的完全控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthetic control over lattice strain in trimetallic AuCu-core Pt-shell nanoparticles†

Synthetic control over lattice strain in trimetallic AuCu-core Pt-shell nanoparticles†

Core–shell nanoparticles can exhibit strongly enhanced performances in electro-, photo- and thermal catalysis. Lattice strain plays a key role in this and is induced by the mismatch between the crystal structure of the core and the shell metal. However, investigating the impact of lattice strain has been challenging due to the lack of a material system in which lattice strain can be controlled systematically, hampering further progress in the field of core–shell catalysis. In this work, we achieve such a core–shell nanoparticle system through the colloidal synthesis of trimetallic Pt-shell Au1−xCux-core nanoparticles. Our seed-mediated growth methodology yields well-defined Au1−xCux-cores, tunable in composition from 0 at% Cu to 77 at% Cu, and monodisperse in size. Subsequent overgrowth results in uniform, epitaxially grown Pt-shells with a controlled thickness of ∼3 atomic layers. By employing a multi-technique characterization strategy combining X-ray diffraction, electron diffraction and aberration corrected electron microscopy, we unravel the atomic structure of the trimetallic system on a single nanoparticle-, ensemble- and bulk scale level, and we unambiguously demonstrate the controlled variation of strain in the Pt-shell from −3.62% compressive-, to +3.79% tensile strain, while retaining full control over all other structural characteristics of the system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信