{"title":"局部自发破缺U(1)′对称的多Z′特征","authors":"Takaaki Nomura, Kei Yagyu","doi":"10.1103/physrevd.111.015034","DOIUrl":null,"url":null,"abstract":"We discuss multi-Z</a:mi>′</a:mo></a:msup></a:math> signatures coming from decays of Higgs bosons in models with a spontaneously broken <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>U</c:mi><c:mo stretchy=\"false\">(</c:mo><c:mn>1</c:mn><c:msup><c:mo stretchy=\"false\">)</c:mo><c:mo>′</c:mo></c:msup></c:math> symmetry, which can be observed as “lepton jets” or multilepton final states depending on the mass range of new bosons. We consider anomaly-free <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>U</g:mi><g:mo stretchy=\"false\">(</g:mo><g:mn>1</g:mn><g:msup><g:mo stretchy=\"false\">)</g:mo><g:mo>′</g:mo></g:msup></g:math> models without introducing new fermions except for right-handed neutrinos, in which the Higgs sector is composed of an isospin doublet and a singlet fields with zero and nonzero <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>U</k:mi><k:mo stretchy=\"false\">(</k:mo><k:mn>1</k:mn><k:msup><k:mo stretchy=\"false\">)</k:mo><k:mo>′</k:mo></k:msup></k:math> charges, respectively. The multi-<o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:msup><o:mi>Z</o:mi><o:mo>′</o:mo></o:msup></o:math> signatures can then be obtained via the decays of the discovered (extra) Higgs boson <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mi>h</q:mi></q:math> (<s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mi>ϕ</s:mi></s:math>), i.e., <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mi>h</u:mi><u:mo stretchy=\"false\">→</u:mo><u:msup><u:mi>Z</u:mi><u:mo>′</u:mo></u:msup><u:msup><u:mi>Z</u:mi><u:mo>′</u:mo></u:msup></u:math>, <x:math xmlns:x=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><x:mi>ϕ</x:mi><x:mo stretchy=\"false\">→</x:mo><x:msup><x:mi>Z</x:mi><x:mo>′</x:mo></x:msup><x:msup><x:mi>Z</x:mi><x:mo>′</x:mo></x:msup></x:math>, and/or h</ab:mi>→</ab:mo>ϕ</ab:mi>ϕ</ab:mi>→</ab:mo>4</ab:mn>Z</ab:mi>′</ab:mo></ab:msup></ab:math> as far as kinematically allowed. We give the upper limit on the branching ratios of <eb:math xmlns:eb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><eb:mi>h</eb:mi></eb:math> into <gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gb:msup><gb:mi>Z</gb:mi><gb:mo>′</gb:mo></gb:msup><gb:msup><gb:mi>Z</gb:mi><gb:mo>′</gb:mo></gb:msup></gb:math> and <ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ib:mn>4</ib:mn><ib:msup><ib:mi>Z</ib:mi><ib:mo>′</ib:mo></ib:msup></ib:math> from the current experimental data in each model. We also show the deviation in the <kb:math xmlns:kb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><kb:mi>h</kb:mi><kb:mi>h</kb:mi><kb:mi>h</kb:mi></kb:math> coupling from the standard model prediction at one-loop level, and find that its amount is typically smaller than 1%. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"53 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi- Z′ signatures of spontaneously broken local U(1)′ symmetry\",\"authors\":\"Takaaki Nomura, Kei Yagyu\",\"doi\":\"10.1103/physrevd.111.015034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss multi-Z</a:mi>′</a:mo></a:msup></a:math> signatures coming from decays of Higgs bosons in models with a spontaneously broken <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mi>U</c:mi><c:mo stretchy=\\\"false\\\">(</c:mo><c:mn>1</c:mn><c:msup><c:mo stretchy=\\\"false\\\">)</c:mo><c:mo>′</c:mo></c:msup></c:math> symmetry, which can be observed as “lepton jets” or multilepton final states depending on the mass range of new bosons. We consider anomaly-free <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mi>U</g:mi><g:mo stretchy=\\\"false\\\">(</g:mo><g:mn>1</g:mn><g:msup><g:mo stretchy=\\\"false\\\">)</g:mo><g:mo>′</g:mo></g:msup></g:math> models without introducing new fermions except for right-handed neutrinos, in which the Higgs sector is composed of an isospin doublet and a singlet fields with zero and nonzero <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:mi>U</k:mi><k:mo stretchy=\\\"false\\\">(</k:mo><k:mn>1</k:mn><k:msup><k:mo stretchy=\\\"false\\\">)</k:mo><k:mo>′</k:mo></k:msup></k:math> charges, respectively. The multi-<o:math xmlns:o=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><o:msup><o:mi>Z</o:mi><o:mo>′</o:mo></o:msup></o:math> signatures can then be obtained via the decays of the discovered (extra) Higgs boson <q:math xmlns:q=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><q:mi>h</q:mi></q:math> (<s:math xmlns:s=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><s:mi>ϕ</s:mi></s:math>), i.e., <u:math xmlns:u=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><u:mi>h</u:mi><u:mo stretchy=\\\"false\\\">→</u:mo><u:msup><u:mi>Z</u:mi><u:mo>′</u:mo></u:msup><u:msup><u:mi>Z</u:mi><u:mo>′</u:mo></u:msup></u:math>, <x:math xmlns:x=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><x:mi>ϕ</x:mi><x:mo stretchy=\\\"false\\\">→</x:mo><x:msup><x:mi>Z</x:mi><x:mo>′</x:mo></x:msup><x:msup><x:mi>Z</x:mi><x:mo>′</x:mo></x:msup></x:math>, and/or h</ab:mi>→</ab:mo>ϕ</ab:mi>ϕ</ab:mi>→</ab:mo>4</ab:mn>Z</ab:mi>′</ab:mo></ab:msup></ab:math> as far as kinematically allowed. We give the upper limit on the branching ratios of <eb:math xmlns:eb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><eb:mi>h</eb:mi></eb:math> into <gb:math xmlns:gb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><gb:msup><gb:mi>Z</gb:mi><gb:mo>′</gb:mo></gb:msup><gb:msup><gb:mi>Z</gb:mi><gb:mo>′</gb:mo></gb:msup></gb:math> and <ib:math xmlns:ib=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ib:mn>4</ib:mn><ib:msup><ib:mi>Z</ib:mi><ib:mo>′</ib:mo></ib:msup></ib:math> from the current experimental data in each model. We also show the deviation in the <kb:math xmlns:kb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><kb:mi>h</kb:mi><kb:mi>h</kb:mi><kb:mi>h</kb:mi></kb:math> coupling from the standard model prediction at one-loop level, and find that its amount is typically smaller than 1%. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.015034\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.015034","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
摘要
我们讨论了在具有自发破断U(1) ‘对称性的模型中希格斯玻色子衰变产生的多重z ’特征,根据新玻色子的质量范围,这些特征可以被观察为“轻子射流”或多轻子最终态。我们考虑无异常的U(1) ‘模型,不引入新的费米子,除了右手中微子,其中希格斯扇区分别由具有零和非零U(1) ’电荷的同位旋双重态和单重态场组成。然后可以通过发现的(额外的)希格斯玻色子h (ϕ)的衰变获得多重Z ‘特征,即h→Z ’ Z ‘, ϕ→Z ’ Z ‘,和/或h→ϕ→4Z ’,只要运动学允许。根据目前各模型的实验数据,给出了h向Z′Z′和4Z′的分支比的上限。我们还展示了hhh耦合在单回路水平上与标准模型预测的偏差,并发现其量通常小于1%。2025年由美国物理学会出版
Multi- Z′ signatures of spontaneously broken local U(1)′ symmetry
We discuss multi-Z′ signatures coming from decays of Higgs bosons in models with a spontaneously broken U(1)′ symmetry, which can be observed as “lepton jets” or multilepton final states depending on the mass range of new bosons. We consider anomaly-free U(1)′ models without introducing new fermions except for right-handed neutrinos, in which the Higgs sector is composed of an isospin doublet and a singlet fields with zero and nonzero U(1)′ charges, respectively. The multi-Z′ signatures can then be obtained via the decays of the discovered (extra) Higgs boson h (ϕ), i.e., h→Z′Z′, ϕ→Z′Z′, and/or h→ϕϕ→4Z′ as far as kinematically allowed. We give the upper limit on the branching ratios of h into Z′Z′ and 4Z′ from the current experimental data in each model. We also show the deviation in the hhh coupling from the standard model prediction at one-loop level, and find that its amount is typically smaller than 1%. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.