三维衍射声层析成像

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Luca Menozzi, Tri Vu, Aidan J. Canning, Harshal Rawtani, Carlos Taboada, Marie Elise Abi Antoun, Chenshuo Ma, Jesse Delia, Van Tu Nguyen, Soon-Woo Cho, Jianing Chen, Theresa Charity, Yirui Xu, Phuong Tran, Jun Xia, Gregory M. Palmer, Tuan Vo-Dinh, Liping Feng, Junjie Yao
{"title":"三维衍射声层析成像","authors":"Luca Menozzi, Tri Vu, Aidan J. Canning, Harshal Rawtani, Carlos Taboada, Marie Elise Abi Antoun, Chenshuo Ma, Jesse Delia, Van Tu Nguyen, Soon-Woo Cho, Jianing Chen, Theresa Charity, Yirui Xu, Phuong Tran, Jun Xia, Gregory M. Palmer, Tuan Vo-Dinh, Liping Feng, Junjie Yao","doi":"10.1038/s41467-025-56435-3","DOIUrl":null,"url":null,"abstract":"<p>Acoustically probing biological tissues with light or sound, photoacoustic and ultrasound imaging can provide anatomical, functional, and/or molecular information at depths far beyond the optical diffusion limit. However, most photoacoustic and ultrasound imaging systems rely on linear-array transducers with elevational focusing and are limited to two-dimensional imaging with anisotropic resolutions. Here, we present three-dimensional diffractive acoustic tomography (3D-DAT), which uses an off-the-shelf linear-array transducer with single-slit acoustic diffraction. Without jeopardizing its accessibility by general users, 3D-DAT has achieved simultaneous 3D photoacoustic and ultrasound imaging with optimal imaging performance in deep tissues, providing near-isotropic resolutions, high imaging speed, and a large field-of-view, as well as enhanced quantitative accuracy and detection sensitivity. Moreover, powered by the fast focal line volumetric reconstruction, 3D-DAT has achieved 50-fold faster reconstruction times than traditional photoacoustic imaging reconstruction. Using 3D-DAT on small animal models, we mapped the distribution of the biliverdin-binding serpin complex in glassfrogs, tracked gold nanoparticle accumulation in a mouse tumor model, imaged genetically-encoded photoswitchable tumors, and investigated polyfluoroalkyl substances exposure on developing embryos. With its enhanced imaging performance and high accessibility, 3D-DAT may find broad applications in fundamental life sciences and biomedical research.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"39 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional diffractive acoustic tomography\",\"authors\":\"Luca Menozzi, Tri Vu, Aidan J. Canning, Harshal Rawtani, Carlos Taboada, Marie Elise Abi Antoun, Chenshuo Ma, Jesse Delia, Van Tu Nguyen, Soon-Woo Cho, Jianing Chen, Theresa Charity, Yirui Xu, Phuong Tran, Jun Xia, Gregory M. Palmer, Tuan Vo-Dinh, Liping Feng, Junjie Yao\",\"doi\":\"10.1038/s41467-025-56435-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Acoustically probing biological tissues with light or sound, photoacoustic and ultrasound imaging can provide anatomical, functional, and/or molecular information at depths far beyond the optical diffusion limit. However, most photoacoustic and ultrasound imaging systems rely on linear-array transducers with elevational focusing and are limited to two-dimensional imaging with anisotropic resolutions. Here, we present three-dimensional diffractive acoustic tomography (3D-DAT), which uses an off-the-shelf linear-array transducer with single-slit acoustic diffraction. Without jeopardizing its accessibility by general users, 3D-DAT has achieved simultaneous 3D photoacoustic and ultrasound imaging with optimal imaging performance in deep tissues, providing near-isotropic resolutions, high imaging speed, and a large field-of-view, as well as enhanced quantitative accuracy and detection sensitivity. Moreover, powered by the fast focal line volumetric reconstruction, 3D-DAT has achieved 50-fold faster reconstruction times than traditional photoacoustic imaging reconstruction. Using 3D-DAT on small animal models, we mapped the distribution of the biliverdin-binding serpin complex in glassfrogs, tracked gold nanoparticle accumulation in a mouse tumor model, imaged genetically-encoded photoswitchable tumors, and investigated polyfluoroalkyl substances exposure on developing embryos. With its enhanced imaging performance and high accessibility, 3D-DAT may find broad applications in fundamental life sciences and biomedical research.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-56435-3\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56435-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

用光或声、光声和超声成像对生物组织进行声学探测,可以在远远超出光扩散极限的深度提供解剖、功能和/或分子信息。然而,大多数光声和超声成像系统依赖于具有高度聚焦的线性阵列换能器,并且仅限于各向异性分辨率的二维成像。在这里,我们提出了三维衍射声断层扫描(3D-DAT),它使用了一种现成的线性阵列换能器,具有单缝声衍射。在不影响普通用户可及性的前提下,3D- dat实现了同时三维光声和超声成像,在深层组织中具有最佳成像性能,提供近各向同性分辨率、高成像速度和大视场,以及增强的定量精度和检测灵敏度。此外,在快速焦线体积重建的支持下,3D-DAT的重建时间比传统光声成像重建快50倍。利用小动物模型的3D-DAT,我们绘制了胆绿素结合蛇形蛋白复合物在玻璃蛙中的分布,追踪了金纳米颗粒在小鼠肿瘤模型中的积累,对遗传编码的光开关肿瘤进行了成像,并研究了多氟烷基物质对发育中的胚胎的影响。由于其增强的成像性能和高可访问性,3D-DAT可能在基础生命科学和生物医学研究中得到广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Three-dimensional diffractive acoustic tomography

Three-dimensional diffractive acoustic tomography

Acoustically probing biological tissues with light or sound, photoacoustic and ultrasound imaging can provide anatomical, functional, and/or molecular information at depths far beyond the optical diffusion limit. However, most photoacoustic and ultrasound imaging systems rely on linear-array transducers with elevational focusing and are limited to two-dimensional imaging with anisotropic resolutions. Here, we present three-dimensional diffractive acoustic tomography (3D-DAT), which uses an off-the-shelf linear-array transducer with single-slit acoustic diffraction. Without jeopardizing its accessibility by general users, 3D-DAT has achieved simultaneous 3D photoacoustic and ultrasound imaging with optimal imaging performance in deep tissues, providing near-isotropic resolutions, high imaging speed, and a large field-of-view, as well as enhanced quantitative accuracy and detection sensitivity. Moreover, powered by the fast focal line volumetric reconstruction, 3D-DAT has achieved 50-fold faster reconstruction times than traditional photoacoustic imaging reconstruction. Using 3D-DAT on small animal models, we mapped the distribution of the biliverdin-binding serpin complex in glassfrogs, tracked gold nanoparticle accumulation in a mouse tumor model, imaged genetically-encoded photoswitchable tumors, and investigated polyfluoroalkyl substances exposure on developing embryos. With its enhanced imaging performance and high accessibility, 3D-DAT may find broad applications in fundamental life sciences and biomedical research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信