单分散、均相SiCNO/C微球:锂离子电池的高容量、耐用负极材料

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Deshuo Wang , Xin Xia , Yihan Li, Jingjiang Sun, Jianjiang He, Qingfu Wang, Wei Zhao
{"title":"单分散、均相SiCNO/C微球:锂离子电池的高容量、耐用负极材料","authors":"Deshuo Wang ,&nbsp;Xin Xia ,&nbsp;Yihan Li,&nbsp;Jingjiang Sun,&nbsp;Jianjiang He,&nbsp;Qingfu Wang,&nbsp;Wei Zhao","doi":"10.1016/j.apsusc.2025.162574","DOIUrl":null,"url":null,"abstract":"<div><div>Silicon suboxide (SiO<sub>x</sub>, x &lt; 2) shows promise as an anode material for lithium-ion batteries due to its high lithium-ion storage capacity. However, its low conductivity and substantial volume changes, similar to those observed in monolithic silicon, restrict its practical application. To address these challenges, this study focuses on designing and synthesizing SiCNO/C composite materials. Employing the Stöber sol–gel method, organopolysilazane oligomers (OPSZ) and resorcinol formaldehyde resin (RF) are co-hydrolyzed and condensed to create uniform OPSZ/RF nanoparticles. Subsequently, high-temperature ceramization produces nitrogen-doped carbon-silicon composites (SiCNO/C). This approach enables the preparation of composite nanomaterials with adjustable sizes (200–1000 nm) and controllable carbon content (20–60 wt%). Nitrogen doping levels range from 4-10 wt%, ensuring uniform distribution of C, Si, N, and O elements within the composite microspheres. Battery performance tests confirm that the presence of a substantial amount of free carbon and effective nitrogen doping increase the active sites on the material surface, resulting in SiCNO/C composites exhibiting high specific capacity and excellent cycling stability as anode materials for lithium-ion batteries. Specifically, the SiCNO/C-1 sample demonstrates an initial discharge capacity of 1309.0 mAh/g, retains 797.6 mAh/g after 100 cycles at 100 mA/g, and maintains 587.0 mAh/g after 400 cycles at 1 A/g. The composite also shows a low volume expansion of 47.7 % after 100 cycles. These results indicate that SiCNO/C microspheres are promising high-capacity and durable anode materials for lithium-ion batteries.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"690 ","pages":"Article 162574"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monodisperse and homogeneous SiCNO/C microspheres: A promising high-capacity and durable anode material for lithium-ion batteries\",\"authors\":\"Deshuo Wang ,&nbsp;Xin Xia ,&nbsp;Yihan Li,&nbsp;Jingjiang Sun,&nbsp;Jianjiang He,&nbsp;Qingfu Wang,&nbsp;Wei Zhao\",\"doi\":\"10.1016/j.apsusc.2025.162574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Silicon suboxide (SiO<sub>x</sub>, x &lt; 2) shows promise as an anode material for lithium-ion batteries due to its high lithium-ion storage capacity. However, its low conductivity and substantial volume changes, similar to those observed in monolithic silicon, restrict its practical application. To address these challenges, this study focuses on designing and synthesizing SiCNO/C composite materials. Employing the Stöber sol–gel method, organopolysilazane oligomers (OPSZ) and resorcinol formaldehyde resin (RF) are co-hydrolyzed and condensed to create uniform OPSZ/RF nanoparticles. Subsequently, high-temperature ceramization produces nitrogen-doped carbon-silicon composites (SiCNO/C). This approach enables the preparation of composite nanomaterials with adjustable sizes (200–1000 nm) and controllable carbon content (20–60 wt%). Nitrogen doping levels range from 4-10 wt%, ensuring uniform distribution of C, Si, N, and O elements within the composite microspheres. Battery performance tests confirm that the presence of a substantial amount of free carbon and effective nitrogen doping increase the active sites on the material surface, resulting in SiCNO/C composites exhibiting high specific capacity and excellent cycling stability as anode materials for lithium-ion batteries. Specifically, the SiCNO/C-1 sample demonstrates an initial discharge capacity of 1309.0 mAh/g, retains 797.6 mAh/g after 100 cycles at 100 mA/g, and maintains 587.0 mAh/g after 400 cycles at 1 A/g. The composite also shows a low volume expansion of 47.7 % after 100 cycles. These results indicate that SiCNO/C microspheres are promising high-capacity and durable anode materials for lithium-ion batteries.</div></div>\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"690 \",\"pages\":\"Article 162574\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169433225002880\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225002880","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

亚氧化硅(SiOx, x <; 2)由于其高锂离子存储容量而显示出作为锂离子电池负极材料的前景。然而,它的低电导率和大量的体积变化,类似于在单片硅中观察到的,限制了它的实际应用。为了解决这些挑战,本研究的重点是设计和合成SiCNO/C复合材料。采用Stöber溶胶-凝胶法,将有机聚硅烷低聚物(OPSZ)与间苯二酚甲醛树脂(RF)共水解缩聚,制备出均匀的OPSZ/RF纳米颗粒。随后,高温陶化制备氮掺杂碳硅复合材料(SiCNO/C)。这种方法可以制备具有可调节尺寸(200-1000 nm)和可控碳含量(20-60 wt%)的复合纳米材料。氮掺杂水平范围为4-10 wt%,确保复合微球内C、Si、N和O元素的均匀分布。电池性能测试证实,大量游离碳和有效氮掺杂的存在增加了材料表面的活性位点,从而使SiCNO/C复合材料作为锂离子电池的负极材料具有高比容量和优异的循环稳定性。具体来说,SiCNO/C-1样品的初始放电容量为1309.0 mAh/g,在100 mA/g下循环100次后保持797.6 mAh/g,在1 A/g下循环400次后保持587.0 mAh/g。经过100次循环后,复合材料的体积膨胀率也很低,为47.7 %。这些结果表明,SiCNO/C微球是一种很有前途的高容量、耐用的锂离子电池负极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Monodisperse and homogeneous SiCNO/C microspheres: A promising high-capacity and durable anode material for lithium-ion batteries

Monodisperse and homogeneous SiCNO/C microspheres: A promising high-capacity and durable anode material for lithium-ion batteries

Monodisperse and homogeneous SiCNO/C microspheres: A promising high-capacity and durable anode material for lithium-ion batteries
Silicon suboxide (SiOx, x < 2) shows promise as an anode material for lithium-ion batteries due to its high lithium-ion storage capacity. However, its low conductivity and substantial volume changes, similar to those observed in monolithic silicon, restrict its practical application. To address these challenges, this study focuses on designing and synthesizing SiCNO/C composite materials. Employing the Stöber sol–gel method, organopolysilazane oligomers (OPSZ) and resorcinol formaldehyde resin (RF) are co-hydrolyzed and condensed to create uniform OPSZ/RF nanoparticles. Subsequently, high-temperature ceramization produces nitrogen-doped carbon-silicon composites (SiCNO/C). This approach enables the preparation of composite nanomaterials with adjustable sizes (200–1000 nm) and controllable carbon content (20–60 wt%). Nitrogen doping levels range from 4-10 wt%, ensuring uniform distribution of C, Si, N, and O elements within the composite microspheres. Battery performance tests confirm that the presence of a substantial amount of free carbon and effective nitrogen doping increase the active sites on the material surface, resulting in SiCNO/C composites exhibiting high specific capacity and excellent cycling stability as anode materials for lithium-ion batteries. Specifically, the SiCNO/C-1 sample demonstrates an initial discharge capacity of 1309.0 mAh/g, retains 797.6 mAh/g after 100 cycles at 100 mA/g, and maintains 587.0 mAh/g after 400 cycles at 1 A/g. The composite also shows a low volume expansion of 47.7 % after 100 cycles. These results indicate that SiCNO/C microspheres are promising high-capacity and durable anode materials for lithium-ion batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信