Yongxiang Zhao,Pietro Vidossich,Biff Forbush,Junfeng Ma,Jesse Rinehart,Marco De Vivo,Erhu Cao
{"title":"利尿剂抑制人NKCC1的结构基础。","authors":"Yongxiang Zhao,Pietro Vidossich,Biff Forbush,Junfeng Ma,Jesse Rinehart,Marco De Vivo,Erhu Cao","doi":"10.1038/s44318-025-00368-6","DOIUrl":null,"url":null,"abstract":"Na+-K+-Cl- cotransporters functions as an anion importers, regulating trans-epithelial chloride secretion, cell volume, and renal salt reabsorption. Loop diuretics, including furosemide, bumetanide, and torsemide, antagonize both NKCC1 and NKCC2, and are first-line medicines for the treatment of edema and hypertension. NKCC1 activation by the molecular crowding sensing WNK kinases is critical if cells are to combat shrinkage during hypertonic stress; however, how phosphorylation accelerates NKCC1 ion transport remains unclear. Here, we present co-structures of phospho-activated NKCC1 bound with furosemide, bumetanide, or torsemide showing that furosemide and bumetanide utilize a carboxyl group to coordinate and co-occlude a K+, whereas torsemide encroaches and expels the K+ from the site. We also found that an amino-terminal segment of NKCC1, once phosphorylated, interacts with the carboxyl-terminal domain, and together, they engage with intracellular ion exit and appear to be poised to facilitate rapid ion translocation. Together, these findings enhance our understanding of NKCC-mediated epithelial ion transport and the molecular mechanisms of its inhibition by loop diuretics.","PeriodicalId":501009,"journal":{"name":"The EMBO Journal","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural basis for human NKCC1 inhibition by loop diuretic drugs.\",\"authors\":\"Yongxiang Zhao,Pietro Vidossich,Biff Forbush,Junfeng Ma,Jesse Rinehart,Marco De Vivo,Erhu Cao\",\"doi\":\"10.1038/s44318-025-00368-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Na+-K+-Cl- cotransporters functions as an anion importers, regulating trans-epithelial chloride secretion, cell volume, and renal salt reabsorption. Loop diuretics, including furosemide, bumetanide, and torsemide, antagonize both NKCC1 and NKCC2, and are first-line medicines for the treatment of edema and hypertension. NKCC1 activation by the molecular crowding sensing WNK kinases is critical if cells are to combat shrinkage during hypertonic stress; however, how phosphorylation accelerates NKCC1 ion transport remains unclear. Here, we present co-structures of phospho-activated NKCC1 bound with furosemide, bumetanide, or torsemide showing that furosemide and bumetanide utilize a carboxyl group to coordinate and co-occlude a K+, whereas torsemide encroaches and expels the K+ from the site. We also found that an amino-terminal segment of NKCC1, once phosphorylated, interacts with the carboxyl-terminal domain, and together, they engage with intracellular ion exit and appear to be poised to facilitate rapid ion translocation. Together, these findings enhance our understanding of NKCC-mediated epithelial ion transport and the molecular mechanisms of its inhibition by loop diuretics.\",\"PeriodicalId\":501009,\"journal\":{\"name\":\"The EMBO Journal\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The EMBO Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44318-025-00368-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EMBO Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44318-025-00368-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
Na+- k +- cl -共转运体作为阴离子输入体,调节跨上皮氯离子分泌、细胞体积和肾盐重吸收。环状利尿剂,包括速尿、布美他尼和托尔塞米,可拮抗NKCC1和NKCC2,是治疗水肿和高血压的一线药物。如果细胞在高渗应激期间对抗收缩,NKCC1由分子拥挤感WNK激酶激活是至关重要的;然而,磷酸化如何加速NKCC1离子运输仍不清楚。在这里,我们展示了磷酸化激活的NKCC1与呋塞米、布美他尼或托尔塞米结合的共结构,表明呋塞米和布美他尼利用一个羧基来协调和共封闭K+,而托尔塞米则侵占并将K+从位点排出。我们还发现,NKCC1的氨基端片段一旦磷酸化,就会与羧基端结构域相互作用,它们一起参与细胞内离子出口,似乎可以促进快速离子转运。总之,这些发现增强了我们对nkcc介导的上皮离子运输及其环利尿剂抑制其分子机制的理解。
Structural basis for human NKCC1 inhibition by loop diuretic drugs.
Na+-K+-Cl- cotransporters functions as an anion importers, regulating trans-epithelial chloride secretion, cell volume, and renal salt reabsorption. Loop diuretics, including furosemide, bumetanide, and torsemide, antagonize both NKCC1 and NKCC2, and are first-line medicines for the treatment of edema and hypertension. NKCC1 activation by the molecular crowding sensing WNK kinases is critical if cells are to combat shrinkage during hypertonic stress; however, how phosphorylation accelerates NKCC1 ion transport remains unclear. Here, we present co-structures of phospho-activated NKCC1 bound with furosemide, bumetanide, or torsemide showing that furosemide and bumetanide utilize a carboxyl group to coordinate and co-occlude a K+, whereas torsemide encroaches and expels the K+ from the site. We also found that an amino-terminal segment of NKCC1, once phosphorylated, interacts with the carboxyl-terminal domain, and together, they engage with intracellular ion exit and appear to be poised to facilitate rapid ion translocation. Together, these findings enhance our understanding of NKCC-mediated epithelial ion transport and the molecular mechanisms of its inhibition by loop diuretics.