微塑料对土壤水力特性和水流的浓度和粒径依赖性影响

IF 4 2区 农林科学 Q2 SOIL SCIENCE
Haoxuan Feng, Xuguang Xing, Jianqiang Du, Sihan Jiao, Miao Yu, Weihua Wang
{"title":"微塑料对土壤水力特性和水流的浓度和粒径依赖性影响","authors":"Haoxuan Feng,&nbsp;Xuguang Xing,&nbsp;Jianqiang Du,&nbsp;Sihan Jiao,&nbsp;Miao Yu,&nbsp;Weihua Wang","doi":"10.1111/ejss.70049","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Extensive usage of agricultural plastic film correspondingly leads to excessive residues of microplastics (MPs). MP accumulation alters soil hydraulic properties and water flow. However, little is known about the combined effects of concentration and particle size on soil hydrological properties, and a numerical approach for modelling infiltrated flow has not been well developed. Hence, we determined soil hydraulic properties and infiltrated flow affected by MP concentration and particle size and established a water flow model suitable for MP-contaminated soils. Quantitative findings indicated that the saturated conductivity for soil–MP mixture was 10.8%–50.0% smaller than that for pure soil, which decreased and increased with the increase in MP concentration and size, respectively. The MP concentration always had significant influences on saturated conductivity; in contrast, the MP particle size always generated significant influences under the condition of small particle size. Besides, higher concentration or size of MPs led to weaker soil water-holding capacity, and the saturated and residual water content decreased by 0.6% – 41.5% and 0.2% – 11.6%, respectively. Furthermore, the presence of MPs inhibited water infiltration, with the wetting front migration rate and cumulative infiltration decreased by 7.1% – 29.4% and 4.7% – 21.7%, respectively, with the increase in the MP concentration and size. Correlation analysis indicated that MP particle size was negatively correlated with saturated/residual moisture, wetting front migration and cumulative infiltration; in addition, MP concentration was negatively correlated with saturated conductivity, residual moisture, wetting front migration and cumulative infiltration; compared with the MP particle size (15.63%), the MP concentration (46.28%) played a major role in the response of soil hydraulic properties and water movement to changes in the external environment. A two-dimensional numerical approach was proposed by considering the Richards equation and hydraulic parameters of soil–MP mixture, and a model based on finite element theory was further employed and validated through comparing experimental observations with numerical simulations, which indicated that the proposed model had a high accuracy in simulating the infiltration process in MP-contained soils. Our findings elucidate the influence of MP concentration and size on soil hydraulic properties and water flow and confirm the potential of using simulations to predict water infiltration in MP-contained soils.</p>\n </div>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"76 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concentration- and Size-Dependent Influences of Microplastics on Soil Hydraulic Properties and Water Flow\",\"authors\":\"Haoxuan Feng,&nbsp;Xuguang Xing,&nbsp;Jianqiang Du,&nbsp;Sihan Jiao,&nbsp;Miao Yu,&nbsp;Weihua Wang\",\"doi\":\"10.1111/ejss.70049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Extensive usage of agricultural plastic film correspondingly leads to excessive residues of microplastics (MPs). MP accumulation alters soil hydraulic properties and water flow. However, little is known about the combined effects of concentration and particle size on soil hydrological properties, and a numerical approach for modelling infiltrated flow has not been well developed. Hence, we determined soil hydraulic properties and infiltrated flow affected by MP concentration and particle size and established a water flow model suitable for MP-contaminated soils. Quantitative findings indicated that the saturated conductivity for soil–MP mixture was 10.8%–50.0% smaller than that for pure soil, which decreased and increased with the increase in MP concentration and size, respectively. The MP concentration always had significant influences on saturated conductivity; in contrast, the MP particle size always generated significant influences under the condition of small particle size. Besides, higher concentration or size of MPs led to weaker soil water-holding capacity, and the saturated and residual water content decreased by 0.6% – 41.5% and 0.2% – 11.6%, respectively. Furthermore, the presence of MPs inhibited water infiltration, with the wetting front migration rate and cumulative infiltration decreased by 7.1% – 29.4% and 4.7% – 21.7%, respectively, with the increase in the MP concentration and size. Correlation analysis indicated that MP particle size was negatively correlated with saturated/residual moisture, wetting front migration and cumulative infiltration; in addition, MP concentration was negatively correlated with saturated conductivity, residual moisture, wetting front migration and cumulative infiltration; compared with the MP particle size (15.63%), the MP concentration (46.28%) played a major role in the response of soil hydraulic properties and water movement to changes in the external environment. A two-dimensional numerical approach was proposed by considering the Richards equation and hydraulic parameters of soil–MP mixture, and a model based on finite element theory was further employed and validated through comparing experimental observations with numerical simulations, which indicated that the proposed model had a high accuracy in simulating the infiltration process in MP-contained soils. Our findings elucidate the influence of MP concentration and size on soil hydraulic properties and water flow and confirm the potential of using simulations to predict water infiltration in MP-contained soils.</p>\\n </div>\",\"PeriodicalId\":12043,\"journal\":{\"name\":\"European Journal of Soil Science\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Soil Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ejss.70049\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejss.70049","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

农用塑料薄膜的广泛使用相应地导致了微塑料的过量残留。MP的积累改变了土壤的水力特性和水流。然而,浓度和粒径对土壤水文特性的综合影响知之甚少,入渗流的数值模拟方法尚未得到很好的发展。因此,我们确定了MP浓度和粒径对土壤水力特性和渗透流量的影响,并建立了适用于MP污染土壤的水流模型。定量结果表明,土壤- MP混合料的饱和电导率比纯土小10.8% ~ 50.0%,随MP浓度和粒径的增加,饱和电导率分别减小和增大。MP浓度对饱和电导率有显著影响;相比之下,MP粒度在小粒度条件下总是产生显著的影响。此外,MPs浓度和粒径越高,土壤持水能力越弱,饱和水和剩余水含量分别降低0.6% ~ 41.5%和0.2% ~ 11.6%。MPs的存在抑制了水分的入渗,随着MPs浓度和粒径的增加,湿锋迁移速率和累计入渗速率分别降低了7.1% ~ 29.4%和4.7% ~ 21.7%。相关分析表明,MP粒径与饱和/剩余水分、湿锋迁移和累积入渗呈负相关;MP浓度与饱和电导率、剩余水分、湿锋迁移和累积入渗呈负相关;与MP粒径(15.63%)相比,MP浓度(46.28%)在土壤水力特性和水分运动对外部环境变化的响应中起主要作用。基于Richards方程和土壤- MP混合物的水力参数,提出了一种二维数值模拟方法,并进一步采用基于有限元理论的模型,通过实验观测与数值模拟的对比验证了该模型对含MP土壤入渗过程的模拟精度较高。我们的研究结果阐明了MP浓度和大小对土壤水力特性和水流的影响,并证实了使用模拟来预测含有MP的土壤中水入渗的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concentration- and Size-Dependent Influences of Microplastics on Soil Hydraulic Properties and Water Flow

Extensive usage of agricultural plastic film correspondingly leads to excessive residues of microplastics (MPs). MP accumulation alters soil hydraulic properties and water flow. However, little is known about the combined effects of concentration and particle size on soil hydrological properties, and a numerical approach for modelling infiltrated flow has not been well developed. Hence, we determined soil hydraulic properties and infiltrated flow affected by MP concentration and particle size and established a water flow model suitable for MP-contaminated soils. Quantitative findings indicated that the saturated conductivity for soil–MP mixture was 10.8%–50.0% smaller than that for pure soil, which decreased and increased with the increase in MP concentration and size, respectively. The MP concentration always had significant influences on saturated conductivity; in contrast, the MP particle size always generated significant influences under the condition of small particle size. Besides, higher concentration or size of MPs led to weaker soil water-holding capacity, and the saturated and residual water content decreased by 0.6% – 41.5% and 0.2% – 11.6%, respectively. Furthermore, the presence of MPs inhibited water infiltration, with the wetting front migration rate and cumulative infiltration decreased by 7.1% – 29.4% and 4.7% – 21.7%, respectively, with the increase in the MP concentration and size. Correlation analysis indicated that MP particle size was negatively correlated with saturated/residual moisture, wetting front migration and cumulative infiltration; in addition, MP concentration was negatively correlated with saturated conductivity, residual moisture, wetting front migration and cumulative infiltration; compared with the MP particle size (15.63%), the MP concentration (46.28%) played a major role in the response of soil hydraulic properties and water movement to changes in the external environment. A two-dimensional numerical approach was proposed by considering the Richards equation and hydraulic parameters of soil–MP mixture, and a model based on finite element theory was further employed and validated through comparing experimental observations with numerical simulations, which indicated that the proposed model had a high accuracy in simulating the infiltration process in MP-contained soils. Our findings elucidate the influence of MP concentration and size on soil hydraulic properties and water flow and confirm the potential of using simulations to predict water infiltration in MP-contained soils.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Soil Science
European Journal of Soil Science 农林科学-土壤科学
CiteScore
8.20
自引率
4.80%
发文量
117
审稿时长
5 months
期刊介绍: The EJSS is an international journal that publishes outstanding papers in soil science that advance the theoretical and mechanistic understanding of physical, chemical and biological processes and their interactions in soils acting from molecular to continental scales in natural and managed environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信