基于单一过渡金属锚定石墨烯的高效OER/ORR双功能电催化剂:接受-反捐赠机制框架下的关键描述符

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Rui Wang, Wei Su, Zongxiang Kang, Shiying Guo, Jing Pan
{"title":"基于单一过渡金属锚定石墨烯的高效OER/ORR双功能电催化剂:接受-反捐赠机制框架下的关键描述符","authors":"Rui Wang,&nbsp;Wei Su,&nbsp;Zongxiang Kang,&nbsp;Shiying Guo,&nbsp;Jing Pan","doi":"10.1016/j.apsusc.2025.162482","DOIUrl":null,"url":null,"abstract":"<div><div>The development of highly efficient, nonprecious, single-metal-atom-based bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is of great significance for various energy conversion devices. Using the first-principles calculations, we have designed a series of single transition metal (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Ru, Rh, Pd and Pt) anchored graphyne systems (TM-TEB). Notably, Ni-TEB and Pd-TEB emerge as promising candidates for OER/ORR bifunctional electrocatalysts, exhibiting lower overpotentials (<em>η</em><sub>OER</sub>, <em>η</em><sub>ORR</sub>) of (0.47, 0.44 V) and (0.36, 0.30 V), respectively, which rival ideal performance of IrO<sub>2</sub> for OER (0.56 V) and Pt for ORR (0.45 V). The superior catalytic activity is attributed to the favorable interactions between the active sites and the oxygen-containing intermediates, facilitating the adsorption and desorption during the catalytic process. The “acceptance-backdonation” mechanism effectively explains these interactions, originating from the moderate <em>p</em>-<em>d</em> orbital hybridization that governs electron transfer and redistribution between TM and adsorbed oxygen atom. This can be quantitatively elucidated through the surface-to-intrinsic descriptors analysis, including adsorption free energy (Δ<em>G</em><sub>ads</sub>), the number of <em>d</em> electrons (<em>θ</em><sub>e</sub>), ICOHP, charge transfer (ΔCharge), <em>φ</em> and <em>ε</em>. These intriguing results may inspire further exploration of bifunctional catalysts for energy storage and conversion applications.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"690 ","pages":"Article 162482"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-efficient OER/ORR bifunctional electrocatalyst based on single transition-metal anchored Graphynes: Key descriptors under acceptance-backdonation mechanism framework\",\"authors\":\"Rui Wang,&nbsp;Wei Su,&nbsp;Zongxiang Kang,&nbsp;Shiying Guo,&nbsp;Jing Pan\",\"doi\":\"10.1016/j.apsusc.2025.162482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of highly efficient, nonprecious, single-metal-atom-based bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is of great significance for various energy conversion devices. Using the first-principles calculations, we have designed a series of single transition metal (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Ru, Rh, Pd and Pt) anchored graphyne systems (TM-TEB). Notably, Ni-TEB and Pd-TEB emerge as promising candidates for OER/ORR bifunctional electrocatalysts, exhibiting lower overpotentials (<em>η</em><sub>OER</sub>, <em>η</em><sub>ORR</sub>) of (0.47, 0.44 V) and (0.36, 0.30 V), respectively, which rival ideal performance of IrO<sub>2</sub> for OER (0.56 V) and Pt for ORR (0.45 V). The superior catalytic activity is attributed to the favorable interactions between the active sites and the oxygen-containing intermediates, facilitating the adsorption and desorption during the catalytic process. The “acceptance-backdonation” mechanism effectively explains these interactions, originating from the moderate <em>p</em>-<em>d</em> orbital hybridization that governs electron transfer and redistribution between TM and adsorbed oxygen atom. This can be quantitatively elucidated through the surface-to-intrinsic descriptors analysis, including adsorption free energy (Δ<em>G</em><sub>ads</sub>), the number of <em>d</em> electrons (<em>θ</em><sub>e</sub>), ICOHP, charge transfer (ΔCharge), <em>φ</em> and <em>ε</em>. These intriguing results may inspire further exploration of bifunctional catalysts for energy storage and conversion applications.</div></div>\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"690 \",\"pages\":\"Article 162482\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169433225001953\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225001953","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发高效、非贵重、单金属原子基的析氧反应(OER)和氧还原反应(ORR)双功能电催化剂对各种能量转换装置具有重要意义。利用第一性原理计算,我们设计了一系列单一过渡金属(TM = Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Nb、Mo、Ru、Rh、Pd和Pt)锚定石墨炔体系(TM- teb)。值得注意的是,Ni-TEB和Pd-TEB表现出较低的过电位(ηOER, ηORR)分别为(0.47,0.44 V)和(0.36,0.30 V),这与IrO2对OER(0.56 V)和Pt对ORR(0.45 V)的理想性能相匹配。优异的催化活性归因于活性位点与含氧中间体之间良好的相互作用,促进了催化过程中的吸附和脱附。“接受-反给予”机制有效地解释了这些相互作用,起源于适度的p-d轨道杂化,该杂化控制着TM和吸附氧原子之间的电子转移和再分配。这可以通过表面-本征描述符分析来定量地阐明,包括吸附自由能(ΔGads)、d电子数(θe)、ICOHP、电荷转移(ΔCharge)、φ和ε。这些有趣的结果可能会激发进一步探索双功能催化剂在能量存储和转换中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-efficient OER/ORR bifunctional electrocatalyst based on single transition-metal anchored Graphynes: Key descriptors under acceptance-backdonation mechanism framework

High-efficient OER/ORR bifunctional electrocatalyst based on single transition-metal anchored Graphynes: Key descriptors under acceptance-backdonation mechanism framework

High-efficient OER/ORR bifunctional electrocatalyst based on single transition-metal anchored Graphynes: Key descriptors under acceptance-backdonation mechanism framework
The development of highly efficient, nonprecious, single-metal-atom-based bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is of great significance for various energy conversion devices. Using the first-principles calculations, we have designed a series of single transition metal (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Ru, Rh, Pd and Pt) anchored graphyne systems (TM-TEB). Notably, Ni-TEB and Pd-TEB emerge as promising candidates for OER/ORR bifunctional electrocatalysts, exhibiting lower overpotentials (ηOER, ηORR) of (0.47, 0.44 V) and (0.36, 0.30 V), respectively, which rival ideal performance of IrO2 for OER (0.56 V) and Pt for ORR (0.45 V). The superior catalytic activity is attributed to the favorable interactions between the active sites and the oxygen-containing intermediates, facilitating the adsorption and desorption during the catalytic process. The “acceptance-backdonation” mechanism effectively explains these interactions, originating from the moderate p-d orbital hybridization that governs electron transfer and redistribution between TM and adsorbed oxygen atom. This can be quantitatively elucidated through the surface-to-intrinsic descriptors analysis, including adsorption free energy (ΔGads), the number of d electrons (θe), ICOHP, charge transfer (ΔCharge), φ and ε. These intriguing results may inspire further exploration of bifunctional catalysts for energy storage and conversion applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信