飓风起源在北大西洋上空向南移动

IF 8.4 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Xi Cao, Renguang Wu, Xianling Jiang, Yifeng Dai, Pengfei Wang, Lei Zhou, Liang Wu, Difei Deng, Ying Sun, Shangfeng Chen, Kaiming Hu, Zhibiao Wang, Lu Liu, Xiaoqing Lan, Zhencai Du, Junhu Zhao, Xiao Xiao
{"title":"飓风起源在北大西洋上空向南移动","authors":"Xi Cao, Renguang Wu, Xianling Jiang, Yifeng Dai, Pengfei Wang, Lei Zhou, Liang Wu, Difei Deng, Ying Sun, Shangfeng Chen, Kaiming Hu, Zhibiao Wang, Lu Liu, Xiaoqing Lan, Zhencai Du, Junhu Zhao, Xiao Xiao","doi":"10.1038/s41612-025-00923-2","DOIUrl":null,"url":null,"abstract":"<p>The hurricane, with maximum wind speed over 64 kts, is among the most terrible calamities over the northern Atlantic (NATL). Previous studies identified a poleward migration of tropical cyclone (TC) genesis over the Pacific Ocean, but the shift over the NATL is statistically insignificant. The present study detects a robust southward migration in the genesis latitude of NATL TCs that later reach hurricane strength after 1979, which is consistent with a growth in hurricane frequency in the southern part (10°-20°N) of NATL. This increasing trend of hurricane frequency is intimately attributable to the decreasing vertical shear of zonal wind, resulting from a decreasing north-south temperature gradient. The reduced north-south temperature gradient is primarily caused by greater warming trend in tropospheric temperature in the subtropics, driven by intensified static stability. The present research suggests a potential increase in the hazards confronted by low-latitude islands and coastal nations in Northern America.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"13 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The southward shift of hurricane genesis over the northern Atlantic Ocean\",\"authors\":\"Xi Cao, Renguang Wu, Xianling Jiang, Yifeng Dai, Pengfei Wang, Lei Zhou, Liang Wu, Difei Deng, Ying Sun, Shangfeng Chen, Kaiming Hu, Zhibiao Wang, Lu Liu, Xiaoqing Lan, Zhencai Du, Junhu Zhao, Xiao Xiao\",\"doi\":\"10.1038/s41612-025-00923-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The hurricane, with maximum wind speed over 64 kts, is among the most terrible calamities over the northern Atlantic (NATL). Previous studies identified a poleward migration of tropical cyclone (TC) genesis over the Pacific Ocean, but the shift over the NATL is statistically insignificant. The present study detects a robust southward migration in the genesis latitude of NATL TCs that later reach hurricane strength after 1979, which is consistent with a growth in hurricane frequency in the southern part (10°-20°N) of NATL. This increasing trend of hurricane frequency is intimately attributable to the decreasing vertical shear of zonal wind, resulting from a decreasing north-south temperature gradient. The reduced north-south temperature gradient is primarily caused by greater warming trend in tropospheric temperature in the subtropics, driven by intensified static stability. The present research suggests a potential increase in the hazards confronted by low-latitude islands and coastal nations in Northern America.</p>\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41612-025-00923-2\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-00923-2","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

最大风速超过64公里的飓风是北大西洋(NATL)上最可怕的灾难之一。以前的研究发现了热带气旋(TC)在太平洋上的极地迁移,但在NATL上的转移在统计上是微不足道的。本研究发现,1979年以后达到飓风强度的NATL tc在起源纬度有强烈的向南迁移,这与NATL南部(10°-20°N)飓风频率的增加是一致的。这种飓风频率增加的趋势与南北向温度梯度减小导致的纬向风垂直切变减小密切相关。南北温度梯度减小的主要原因是静态稳定性增强导致副热带对流层温度变暖趋势增强。目前的研究表明,北美低纬度岛屿和沿海国家面临的危险可能会增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The southward shift of hurricane genesis over the northern Atlantic Ocean

The southward shift of hurricane genesis over the northern Atlantic Ocean

The hurricane, with maximum wind speed over 64 kts, is among the most terrible calamities over the northern Atlantic (NATL). Previous studies identified a poleward migration of tropical cyclone (TC) genesis over the Pacific Ocean, but the shift over the NATL is statistically insignificant. The present study detects a robust southward migration in the genesis latitude of NATL TCs that later reach hurricane strength after 1979, which is consistent with a growth in hurricane frequency in the southern part (10°-20°N) of NATL. This increasing trend of hurricane frequency is intimately attributable to the decreasing vertical shear of zonal wind, resulting from a decreasing north-south temperature gradient. The reduced north-south temperature gradient is primarily caused by greater warming trend in tropospheric temperature in the subtropics, driven by intensified static stability. The present research suggests a potential increase in the hazards confronted by low-latitude islands and coastal nations in Northern America.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信