通过Friedel-Crafts反应制备的叶绿素-醌缀合物的物理性质。

IF 2.9 3区 生物学 Q2 PLANT SCIENCES
Saki Kichishima, Kana Sakaguchi, Hitoshi Tamiaki
{"title":"通过Friedel-Crafts反应制备的叶绿素-醌缀合物的物理性质。","authors":"Saki Kichishima, Kana Sakaguchi, Hitoshi Tamiaki","doi":"10.1007/s11120-024-01132-3","DOIUrl":null,"url":null,"abstract":"<p><p>Pheophytin-a derivatives possessing plastoquinone and phylloquinone analogs in the peripheral 3-substituent were prepared by Friedel-Crafts reactions of a 3-hydroxymethyl-chlorin as one of the chlorophyll-a derivatives with benzo- and naphthohydroquinones, respectively, and successive oxidation of the 1,4-dihydroxy-aryl groups in the resulting dehydration products. The 3-quinonylmethyl-chlorins exhibited ultraviolet-visible absorption and circular dichroism spectra in acetonitrile, which were composed of those of the starting 3-hydroxymethyl-chlorin and the corresponding methylated benzo- and naphthoquinones. No intramolecular interaction between the chlorin and quinone π-systems was observed in the solution owing to the methylene spacer. The first reduction potentials of the quinone moieties in the synthetic conjugates were determined by cyclic voltammetry and shifted positively from those of the reference quinones. The former quinonyl groups were reduced more readily by approximately 0.1 V than the latter quinones, which was ascribable to the stabilization of the quinonyl anion radical by the nearby macrocyclic chlorin π-chromophore. This observation implied that the reduction potentials of quinones were regulated by the close pheophytin-a derivative by through-space interaction. Considering the charge shift from pheophytin-a anion radical to plastoquinone and phylloquinone in reaction centers of photosystems II and I, respectively, the reduction potentials of these quinones as a determinant factor of the rapid electron transfer process would be dependent on the pheophytin-a in the photosynthetic reaction centers of oxygenic phototrophs as well as on the neighboring peptides.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":"163 1","pages":"8"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742327/pdf/","citationCount":"0","resultStr":"{\"title\":\"Physical properties of chlorophyll-quinone conjugates prepared via Friedel-Crafts reaction.\",\"authors\":\"Saki Kichishima, Kana Sakaguchi, Hitoshi Tamiaki\",\"doi\":\"10.1007/s11120-024-01132-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pheophytin-a derivatives possessing plastoquinone and phylloquinone analogs in the peripheral 3-substituent were prepared by Friedel-Crafts reactions of a 3-hydroxymethyl-chlorin as one of the chlorophyll-a derivatives with benzo- and naphthohydroquinones, respectively, and successive oxidation of the 1,4-dihydroxy-aryl groups in the resulting dehydration products. The 3-quinonylmethyl-chlorins exhibited ultraviolet-visible absorption and circular dichroism spectra in acetonitrile, which were composed of those of the starting 3-hydroxymethyl-chlorin and the corresponding methylated benzo- and naphthoquinones. No intramolecular interaction between the chlorin and quinone π-systems was observed in the solution owing to the methylene spacer. The first reduction potentials of the quinone moieties in the synthetic conjugates were determined by cyclic voltammetry and shifted positively from those of the reference quinones. The former quinonyl groups were reduced more readily by approximately 0.1 V than the latter quinones, which was ascribable to the stabilization of the quinonyl anion radical by the nearby macrocyclic chlorin π-chromophore. This observation implied that the reduction potentials of quinones were regulated by the close pheophytin-a derivative by through-space interaction. Considering the charge shift from pheophytin-a anion radical to plastoquinone and phylloquinone in reaction centers of photosystems II and I, respectively, the reduction potentials of these quinones as a determinant factor of the rapid electron transfer process would be dependent on the pheophytin-a in the photosynthetic reaction centers of oxygenic phototrophs as well as on the neighboring peptides.</p>\",\"PeriodicalId\":20130,\"journal\":{\"name\":\"Photosynthesis Research\",\"volume\":\"163 1\",\"pages\":\"8\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742327/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photosynthesis Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11120-024-01132-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthesis Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11120-024-01132-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

叶绿素-a衍生物中的3-羟甲基氯分别与苯并醌和萘对苯二酚进行Friedel-Crafts反应,并对脱水产物中的1,4-二羟基芳基进行连续氧化,得到了在3-取代基上具有塑料醌和叶绿醌类似物的叶绿素-a衍生物。3-羟甲基氯在乙腈中表现出紫外可见吸收光谱和圆二色性,由起始的3-羟甲基氯和相应的甲基化苯醌和萘醌组成。由于亚甲基的存在,溶液中氯和醌π系之间没有发生分子内相互作用。用循环伏安法测定了合成共轭物中醌类的第一还原电位,发现其与参考醌类的第一还原电位正偏移。前者比后者更容易被还原约0.1 V,这是由于附近的大环氯π-发色团稳定了醌基阴离子自由基。这一观察结果表明,醌类化合物的还原电位是通过空间相互作用来调节的。考虑到电荷在光系统II和光系统I的反应中心分别从叶绿素-a阴离子自由基转移到plastoquinone和phylloquinone,作为快速电子转移过程的决定因素,这些醌的还原电位将依赖于氧养生物光合反应中心的叶绿素-a以及邻近的多肽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physical properties of chlorophyll-quinone conjugates prepared via Friedel-Crafts reaction.

Pheophytin-a derivatives possessing plastoquinone and phylloquinone analogs in the peripheral 3-substituent were prepared by Friedel-Crafts reactions of a 3-hydroxymethyl-chlorin as one of the chlorophyll-a derivatives with benzo- and naphthohydroquinones, respectively, and successive oxidation of the 1,4-dihydroxy-aryl groups in the resulting dehydration products. The 3-quinonylmethyl-chlorins exhibited ultraviolet-visible absorption and circular dichroism spectra in acetonitrile, which were composed of those of the starting 3-hydroxymethyl-chlorin and the corresponding methylated benzo- and naphthoquinones. No intramolecular interaction between the chlorin and quinone π-systems was observed in the solution owing to the methylene spacer. The first reduction potentials of the quinone moieties in the synthetic conjugates were determined by cyclic voltammetry and shifted positively from those of the reference quinones. The former quinonyl groups were reduced more readily by approximately 0.1 V than the latter quinones, which was ascribable to the stabilization of the quinonyl anion radical by the nearby macrocyclic chlorin π-chromophore. This observation implied that the reduction potentials of quinones were regulated by the close pheophytin-a derivative by through-space interaction. Considering the charge shift from pheophytin-a anion radical to plastoquinone and phylloquinone in reaction centers of photosystems II and I, respectively, the reduction potentials of these quinones as a determinant factor of the rapid electron transfer process would be dependent on the pheophytin-a in the photosynthetic reaction centers of oxygenic phototrophs as well as on the neighboring peptides.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photosynthesis Research
Photosynthesis Research 生物-植物科学
CiteScore
6.90
自引率
8.10%
发文量
91
审稿时长
4.5 months
期刊介绍: Photosynthesis Research is an international journal open to papers of merit dealing with both basic and applied aspects of photosynthesis. It covers all aspects of photosynthesis research, including, but not limited to, light absorption and emission, excitation energy transfer, primary photochemistry, model systems, membrane components, protein complexes, electron transport, photophosphorylation, carbon assimilation, regulatory phenomena, molecular biology, environmental and ecological aspects, photorespiration, and bacterial and algal photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信