{"title":"从MSSM的标量三重态和单重态扩展的角度看电偶极矩:中子、电子、汞和b和c夸克的研究","authors":"Qing-hua Li, Jin-Lei Yang, Xiang Yang, Tai-Fu Feng","doi":"10.1103/physrevd.111.015033","DOIUrl":null,"url":null,"abstract":"In the framework of the minimal supersymmetric model extension with new scalar triplets and singlet (TNMSSM), we analyze the electric dipole moment (EDM) of neutrons (d</a:mi>n</a:mi></a:msub></a:math>), electrons EDM(<c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>d</c:mi><c:mi>e</c:mi></c:msub></c:math>), mercury EDM(<e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msub><e:mi>d</e:mi><e:mrow><e:mi>H</e:mi><e:mi>g</e:mi></e:mrow></e:msub></e:math>), and <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>b</g:mi></g:math> quarks (<i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msub><i:mi>d</i:mi><i:mi>b</i:mi></i:msub></i:math>) and <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>c</k:mi></k:math> quarks (<m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:msub><m:mi>d</m:mi><m:mi>c</m:mi></m:msub></m:math>) by considering the contributions from the one-loop diagrams, some two-loop diagrams, and the Weinberg operators. The effects of TNMSSM specific <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mi>C</o:mi><o:mi>P</o:mi></o:math>-violating sources <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mrow><q:msub><q:mrow><q:mi>χ</q:mi></q:mrow><q:mrow><q:mi>d</q:mi></q:mrow></q:msub></q:mrow></q:math>, <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mrow><s:msub><s:mrow><s:mi>χ</s:mi></s:mrow><s:mrow><s:mi>t</s:mi></s:mrow></s:msub></s:mrow></s:math> on <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:msub><u:mi>d</u:mi><u:mi>n</u:mi></u:msub></u:math>, <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:msub><w:mi>d</w:mi><w:mi>e</w:mi></w:msub></w:math>, <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:msub><y:mi>d</y:mi><y:mrow><y:mi>H</y:mi><y:mi>g</y:mi></y:mrow></y:msub></y:math>, d</ab:mi>b</ab:mi></ab:msub></ab:math>, and <cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cb:msub><cb:mi>d</cb:mi><cb:mi>c</cb:mi></cb:msub></cb:math> are specialized; it is found that they have significant contributions to these EDMs, and the current upper bounds on <eb:math xmlns:eb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><eb:msub><eb:mi>d</eb:mi><eb:mi>n</eb:mi></eb:msub></eb:math> impose strict constraints on <gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gb:mrow><gb:msub><gb:mrow><gb:mi>χ</gb:mi></gb:mrow><gb:mrow><gb:mi>d</gb:mi></gb:mrow></gb:msub></gb:mrow></gb:math>, <ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ib:mrow><ib:msub><ib:mrow><ib:mi>χ</ib:mi></ib:mrow><ib:mrow><ib:mi>t</ib:mi></ib:mrow></ib:msub></ib:mrow></ib:math>. The theoretical predictions on <kb:math xmlns:kb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><kb:msub><kb:mi>d</kb:mi><kb:mi>b</kb:mi></kb:msub></kb:math>, <mb:math xmlns:mb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mb:msub><mb:mi>d</mb:mi><mb:mi>c</mb:mi></mb:msub></mb:math> can reach about <ob:math xmlns:ob=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ob:mrow><ob:msup><ob:mrow><ob:mn>10</ob:mn></ob:mrow><ob:mrow><ob:mo>−</ob:mo><ob:mn>22</ob:mn></ob:mrow></ob:msup><ob:mtext> </ob:mtext><ob:mtext> </ob:mtext><ob:mi mathvariant=\"normal\">e</ob:mi><ob:mo>·</ob:mo><ob:mi>cm</ob:mi></ob:mrow></ob:math> and <rb:math xmlns:rb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><rb:mrow><rb:msup><rb:mrow><rb:mn>10</rb:mn></rb:mrow><rb:mrow><rb:mo>−</rb:mo><rb:mn>23</rb:mn></rb:mrow></rb:msup><rb:mtext> </rb:mtext><rb:mtext> </rb:mtext><rb:mi mathvariant=\"normal\">e</rb:mi><rb:mo>·</rb:mo><rb:mi>cm</rb:mi></rb:mrow></rb:math> respectively by taking the upper bounds on <ub:math xmlns:ub=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ub:msub><ub:mi>d</ub:mi><ub:mi>n</ub:mi></ub:msub></ub:math>, <wb:math xmlns:wb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><wb:msub><wb:mi>d</wb:mi><wb:mi>e</wb:mi></wb:msub></wb:math>, and <yb:math xmlns:yb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><yb:msub><yb:mi>d</yb:mi><yb:mrow><yb:mi>H</yb:mi><yb:mi>g</yb:mi></yb:mrow></yb:msub></yb:math> into account, which have great potential to be observed in the future. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"30 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electric dipole moments from the perspective of a scalar triplet and singlet extension of the MSSM: A study of neutrons, electrons, mercury, and b and c quarks\",\"authors\":\"Qing-hua Li, Jin-Lei Yang, Xiang Yang, Tai-Fu Feng\",\"doi\":\"10.1103/physrevd.111.015033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the framework of the minimal supersymmetric model extension with new scalar triplets and singlet (TNMSSM), we analyze the electric dipole moment (EDM) of neutrons (d</a:mi>n</a:mi></a:msub></a:math>), electrons EDM(<c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:msub><c:mi>d</c:mi><c:mi>e</c:mi></c:msub></c:math>), mercury EDM(<e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:msub><e:mi>d</e:mi><e:mrow><e:mi>H</e:mi><e:mi>g</e:mi></e:mrow></e:msub></e:math>), and <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mi>b</g:mi></g:math> quarks (<i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:msub><i:mi>d</i:mi><i:mi>b</i:mi></i:msub></i:math>) and <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:mi>c</k:mi></k:math> quarks (<m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:msub><m:mi>d</m:mi><m:mi>c</m:mi></m:msub></m:math>) by considering the contributions from the one-loop diagrams, some two-loop diagrams, and the Weinberg operators. The effects of TNMSSM specific <o:math xmlns:o=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><o:mi>C</o:mi><o:mi>P</o:mi></o:math>-violating sources <q:math xmlns:q=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><q:mrow><q:msub><q:mrow><q:mi>χ</q:mi></q:mrow><q:mrow><q:mi>d</q:mi></q:mrow></q:msub></q:mrow></q:math>, <s:math xmlns:s=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><s:mrow><s:msub><s:mrow><s:mi>χ</s:mi></s:mrow><s:mrow><s:mi>t</s:mi></s:mrow></s:msub></s:mrow></s:math> on <u:math xmlns:u=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><u:msub><u:mi>d</u:mi><u:mi>n</u:mi></u:msub></u:math>, <w:math xmlns:w=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><w:msub><w:mi>d</w:mi><w:mi>e</w:mi></w:msub></w:math>, <y:math xmlns:y=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><y:msub><y:mi>d</y:mi><y:mrow><y:mi>H</y:mi><y:mi>g</y:mi></y:mrow></y:msub></y:math>, d</ab:mi>b</ab:mi></ab:msub></ab:math>, and <cb:math xmlns:cb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><cb:msub><cb:mi>d</cb:mi><cb:mi>c</cb:mi></cb:msub></cb:math> are specialized; it is found that they have significant contributions to these EDMs, and the current upper bounds on <eb:math xmlns:eb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><eb:msub><eb:mi>d</eb:mi><eb:mi>n</eb:mi></eb:msub></eb:math> impose strict constraints on <gb:math xmlns:gb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><gb:mrow><gb:msub><gb:mrow><gb:mi>χ</gb:mi></gb:mrow><gb:mrow><gb:mi>d</gb:mi></gb:mrow></gb:msub></gb:mrow></gb:math>, <ib:math xmlns:ib=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ib:mrow><ib:msub><ib:mrow><ib:mi>χ</ib:mi></ib:mrow><ib:mrow><ib:mi>t</ib:mi></ib:mrow></ib:msub></ib:mrow></ib:math>. The theoretical predictions on <kb:math xmlns:kb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><kb:msub><kb:mi>d</kb:mi><kb:mi>b</kb:mi></kb:msub></kb:math>, <mb:math xmlns:mb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><mb:msub><mb:mi>d</mb:mi><mb:mi>c</mb:mi></mb:msub></mb:math> can reach about <ob:math xmlns:ob=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ob:mrow><ob:msup><ob:mrow><ob:mn>10</ob:mn></ob:mrow><ob:mrow><ob:mo>−</ob:mo><ob:mn>22</ob:mn></ob:mrow></ob:msup><ob:mtext> </ob:mtext><ob:mtext> </ob:mtext><ob:mi mathvariant=\\\"normal\\\">e</ob:mi><ob:mo>·</ob:mo><ob:mi>cm</ob:mi></ob:mrow></ob:math> and <rb:math xmlns:rb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><rb:mrow><rb:msup><rb:mrow><rb:mn>10</rb:mn></rb:mrow><rb:mrow><rb:mo>−</rb:mo><rb:mn>23</rb:mn></rb:mrow></rb:msup><rb:mtext> </rb:mtext><rb:mtext> </rb:mtext><rb:mi mathvariant=\\\"normal\\\">e</rb:mi><rb:mo>·</rb:mo><rb:mi>cm</rb:mi></rb:mrow></rb:math> respectively by taking the upper bounds on <ub:math xmlns:ub=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ub:msub><ub:mi>d</ub:mi><ub:mi>n</ub:mi></ub:msub></ub:math>, <wb:math xmlns:wb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><wb:msub><wb:mi>d</wb:mi><wb:mi>e</wb:mi></wb:msub></wb:math>, and <yb:math xmlns:yb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><yb:msub><yb:mi>d</yb:mi><yb:mrow><yb:mi>H</yb:mi><yb:mi>g</yb:mi></yb:mrow></yb:msub></yb:math> into account, which have great potential to be observed in the future. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.015033\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.015033","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Electric dipole moments from the perspective of a scalar triplet and singlet extension of the MSSM: A study of neutrons, electrons, mercury, and b and c quarks
In the framework of the minimal supersymmetric model extension with new scalar triplets and singlet (TNMSSM), we analyze the electric dipole moment (EDM) of neutrons (dn), electrons EDM(de), mercury EDM(dHg), and b quarks (db) and c quarks (dc) by considering the contributions from the one-loop diagrams, some two-loop diagrams, and the Weinberg operators. The effects of TNMSSM specific CP-violating sources χd, χt on dn, de, dHg, db, and dc are specialized; it is found that they have significant contributions to these EDMs, and the current upper bounds on dn impose strict constraints on χd, χt. The theoretical predictions on db, dc can reach about 10−22e·cm and 10−23e·cm respectively by taking the upper bounds on dn, de, and dHg into account, which have great potential to be observed in the future. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.