cu纳米板上的锇原子位用于有效的双电子氧还原成H2O2

IF 19.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chem Pub Date : 2025-06-12 DOI:10.1016/j.chempr.2024.102393
Yingjun Sun , Zhengyi Qian , Mingzi Sun , Yingjie Li , Qinghua Zhang , Yan Nie , Lin Gu , Mingchuan Luo , Jianguo Liu , Bolong Huang , Shaojun Guo
{"title":"cu纳米板上的锇原子位用于有效的双电子氧还原成H2O2","authors":"Yingjun Sun ,&nbsp;Zhengyi Qian ,&nbsp;Mingzi Sun ,&nbsp;Yingjie Li ,&nbsp;Qinghua Zhang ,&nbsp;Yan Nie ,&nbsp;Lin Gu ,&nbsp;Mingchuan Luo ,&nbsp;Jianguo Liu ,&nbsp;Bolong Huang ,&nbsp;Shaojun Guo","doi":"10.1016/j.chempr.2024.102393","DOIUrl":null,"url":null,"abstract":"<div><div>Electrocatalytic hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) production from O<sub>2</sub> reduction is attractive because of its wide applications; however, the lack of efficient and selective electrocatalysts hinders its further development. Herein, we have created a class of electrocatalysts by anchoring osmium (Os) single atomic sites on ultrathin copper sulfide nanoplates (Os<sub>1</sub>-CuS NPs) to greatly boost the electroreduction of O<sub>2</sub> into H<sub>2</sub>O<sub>2</sub> via a two-electron pathway. The Os single-atomic-site catalyst with sulfur coordination achieved a record-high Os loading (25.9 wt %) and an exceptional H<sub>2</sub>O<sub>2</sub> production rate (8.2 mol g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup>) with near-perfect selectivity (∼98%), making it a top performer among metal-based electrocatalysts. <em>In situ</em> attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and density functional theory (DFT) calculations revealed that the introduced Os sites promote a selective 2e<sup>−</sup> oxygen reduction pathway by strengthening OOH binding and thus suppressing the undesired 4e<sup>−</sup> pathway. This study advances the design of high-performance single-atomic-site electrocatalysts for selective H<sub>2</sub>O<sub>2</sub> generation.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"11 6","pages":"Article 102393"},"PeriodicalIF":19.6000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Osmium atomic sites on CuS nanoplates for efficient two-electron oxygen reduction into H2O2\",\"authors\":\"Yingjun Sun ,&nbsp;Zhengyi Qian ,&nbsp;Mingzi Sun ,&nbsp;Yingjie Li ,&nbsp;Qinghua Zhang ,&nbsp;Yan Nie ,&nbsp;Lin Gu ,&nbsp;Mingchuan Luo ,&nbsp;Jianguo Liu ,&nbsp;Bolong Huang ,&nbsp;Shaojun Guo\",\"doi\":\"10.1016/j.chempr.2024.102393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electrocatalytic hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) production from O<sub>2</sub> reduction is attractive because of its wide applications; however, the lack of efficient and selective electrocatalysts hinders its further development. Herein, we have created a class of electrocatalysts by anchoring osmium (Os) single atomic sites on ultrathin copper sulfide nanoplates (Os<sub>1</sub>-CuS NPs) to greatly boost the electroreduction of O<sub>2</sub> into H<sub>2</sub>O<sub>2</sub> via a two-electron pathway. The Os single-atomic-site catalyst with sulfur coordination achieved a record-high Os loading (25.9 wt %) and an exceptional H<sub>2</sub>O<sub>2</sub> production rate (8.2 mol g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup>) with near-perfect selectivity (∼98%), making it a top performer among metal-based electrocatalysts. <em>In situ</em> attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and density functional theory (DFT) calculations revealed that the introduced Os sites promote a selective 2e<sup>−</sup> oxygen reduction pathway by strengthening OOH binding and thus suppressing the undesired 4e<sup>−</sup> pathway. This study advances the design of high-performance single-atomic-site electrocatalysts for selective H<sub>2</sub>O<sub>2</sub> generation.</div></div>\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":\"11 6\",\"pages\":\"Article 102393\"},\"PeriodicalIF\":19.6000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451929424006387\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929424006387","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电催化O2还原生产过氧化氢(H2O2)具有广泛的应用前景;然而,缺乏高效和选择性的电催化剂阻碍了其进一步发展。在此,我们通过在超薄硫化铜纳米板(os1 - cu NPs)上锚定锇(Os)单原子位,创造了一类电催化剂,通过双电子途径极大地促进了O2电还原成H2O2。具有硫配位的Os单原子位催化剂实现了创纪录的高Os负载(25.9 wt %)和卓越的H2O2产率(8.2 mol gcat−1 h−1),具有近乎完美的选择性(~ 98%),使其成为金属基电催化剂中的最佳表现。原位衰减全反射表面增强红外吸收光谱(ATR-SEIRAS)和密度泛函数理论(DFT)计算表明,引入的Os位点通过增强OOH结合促进了选择性的2e -氧还原途径,从而抑制了不需要的4e -途径。本研究提出了用于选择性生成H2O2的高性能单原子位电催化剂的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Osmium atomic sites on CuS nanoplates for efficient two-electron oxygen reduction into H2O2

Osmium atomic sites on CuS nanoplates for efficient two-electron oxygen reduction into H2O2

Osmium atomic sites on CuS nanoplates for efficient two-electron oxygen reduction into H2O2
Electrocatalytic hydrogen peroxide (H2O2) production from O2 reduction is attractive because of its wide applications; however, the lack of efficient and selective electrocatalysts hinders its further development. Herein, we have created a class of electrocatalysts by anchoring osmium (Os) single atomic sites on ultrathin copper sulfide nanoplates (Os1-CuS NPs) to greatly boost the electroreduction of O2 into H2O2 via a two-electron pathway. The Os single-atomic-site catalyst with sulfur coordination achieved a record-high Os loading (25.9 wt %) and an exceptional H2O2 production rate (8.2 mol gcat−1 h−1) with near-perfect selectivity (∼98%), making it a top performer among metal-based electrocatalysts. In situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and density functional theory (DFT) calculations revealed that the introduced Os sites promote a selective 2e oxygen reduction pathway by strengthening OOH binding and thus suppressing the undesired 4e pathway. This study advances the design of high-performance single-atomic-site electrocatalysts for selective H2O2 generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信