地幔岩石中镍的矿物学分布控制着岩浆硫化物镍系统的富集程度

IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Daryl E. Blanks, David A. Holwell, Isra S. Ezad, Andrea Giuliani, Marco L. Fiorentini, Stephen F. Foley
{"title":"地幔岩石中镍的矿物学分布控制着岩浆硫化物镍系统的富集程度","authors":"Daryl E. Blanks, David A. Holwell, Isra S. Ezad, Andrea Giuliani, Marco L. Fiorentini, Stephen F. Foley","doi":"10.1007/s00126-025-01349-9","DOIUrl":null,"url":null,"abstract":"<p>Mantle-derived mafic-ultramafic melts are the primary host for magmatic Ni-Cu-Co-PGE deposits. One common assumption about this mineral system is that Ni-fertility is a product of high-degree melting of anhydrous mantle peridotites, including a substantial contribution from olivine. However, in metasomatised mantle rocks, which partially melt at lower temperatures than anhydrous peridotites, Ni is hosted by a range of minerals, including hydrous phases such as phlogopite and amphibole in addition to olivine and orthopyroxene. The lower melting point of these hydrous phases makes Ni in phlogopite a potentially significant contributor to the Ni enrichment of mantle melts from metasomatised assemblages. We analyse a suite of phlogopite-bearing mantle rocks which display variably metasomatised assemblages using SEM mapping to quantify mineral assemblages, and laser ablation ICP-MS to determine the Ni deportment in these rocks. Phlogopite in hydrous peridotites contains 859–1126 ppm Ni equating to ~ 12% of the bulk Ni content in an assemblage containing 25% phlogopite. Mica-Amphibole-Rutile-Ilmenite-Diopside rocks contain phlogopite with 428–715 ppm Ni, which can contribute up to 50% of the bulk Ni in an assemblage of 30% phlogopite. At temperatures below the dry peridotite solidus (&lt; 1300 °C), phlogopite can become a significant contributor of Ni to mantle melts. Thus, partial melting of metasomatised hydrous assemblages can produce Ni-fertile mafic-ultramafic magmas without substantial temperature perturbations such as those associated with mantle plumes. This opens up a range of geodynamic settings for Ni sulfide fertility, away from large igneous provinces and their plumbing systems, into settings such as orogenic belts, arcs and intraplate rifts.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"37 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mineralogical distribution of Ni in mantle rocks controls the fertility of magmatic Ni-sulfide systems\",\"authors\":\"Daryl E. Blanks, David A. Holwell, Isra S. Ezad, Andrea Giuliani, Marco L. Fiorentini, Stephen F. Foley\",\"doi\":\"10.1007/s00126-025-01349-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mantle-derived mafic-ultramafic melts are the primary host for magmatic Ni-Cu-Co-PGE deposits. One common assumption about this mineral system is that Ni-fertility is a product of high-degree melting of anhydrous mantle peridotites, including a substantial contribution from olivine. However, in metasomatised mantle rocks, which partially melt at lower temperatures than anhydrous peridotites, Ni is hosted by a range of minerals, including hydrous phases such as phlogopite and amphibole in addition to olivine and orthopyroxene. The lower melting point of these hydrous phases makes Ni in phlogopite a potentially significant contributor to the Ni enrichment of mantle melts from metasomatised assemblages. We analyse a suite of phlogopite-bearing mantle rocks which display variably metasomatised assemblages using SEM mapping to quantify mineral assemblages, and laser ablation ICP-MS to determine the Ni deportment in these rocks. Phlogopite in hydrous peridotites contains 859–1126 ppm Ni equating to ~ 12% of the bulk Ni content in an assemblage containing 25% phlogopite. Mica-Amphibole-Rutile-Ilmenite-Diopside rocks contain phlogopite with 428–715 ppm Ni, which can contribute up to 50% of the bulk Ni in an assemblage of 30% phlogopite. At temperatures below the dry peridotite solidus (&lt; 1300 °C), phlogopite can become a significant contributor of Ni to mantle melts. Thus, partial melting of metasomatised hydrous assemblages can produce Ni-fertile mafic-ultramafic magmas without substantial temperature perturbations such as those associated with mantle plumes. This opens up a range of geodynamic settings for Ni sulfide fertility, away from large igneous provinces and their plumbing systems, into settings such as orogenic belts, arcs and intraplate rifts.</p>\",\"PeriodicalId\":18682,\"journal\":{\"name\":\"Mineralium Deposita\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralium Deposita\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00126-025-01349-9\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-025-01349-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

幔源基性-超基性熔体是岩浆型镍铜钴矿床的主要寄主。关于这一矿物系统的一个普遍假设是,镍的肥沃性是无水地幔橄榄岩高度熔融的产物,其中包括橄榄石的大量贡献。然而,在交代地幔岩石中,相对于无水橄榄岩,它在更低的温度下部分熔化,镍被一系列矿物所容纳,除了橄榄石和正辉石之外,还包括水相,如绢云母和角闪石。这些含水相较低的熔点使得绿云母中的Ni成为交代组合中地幔熔体富集Ni的潜在重要贡献者。我们分析了一套含辉云母的地幔岩石,这些岩石显示出不同的变质组合,使用SEM测绘来量化矿物组合,并使用激光烧蚀ICP-MS来确定这些岩石中的Ni组分。含水橄榄岩中的绿云母镍含量为859-1126 ppm,相当于含25%绿云母组合中镍含量的12%。云母-角闪石-金红石-钛铁矿-透辉石岩石中含有428-715 ppm的硅云母,在含30%硅云母的组合中,镍含量高达50%。在低于干橄榄岩固体(< 1300°C)的温度下,绿云母可以成为地幔熔体中Ni的重要贡献者。因此,交代含水组合的部分熔融可以产生富镍的基性-超基性岩浆,而不会产生与地幔柱相关的大量温度扰动。这为镍硫化物的富集开辟了一系列地球动力学环境,远离大型火成岩省及其管道系统,进入造山带、弧形和板内裂谷等环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The mineralogical distribution of Ni in mantle rocks controls the fertility of magmatic Ni-sulfide systems

Mantle-derived mafic-ultramafic melts are the primary host for magmatic Ni-Cu-Co-PGE deposits. One common assumption about this mineral system is that Ni-fertility is a product of high-degree melting of anhydrous mantle peridotites, including a substantial contribution from olivine. However, in metasomatised mantle rocks, which partially melt at lower temperatures than anhydrous peridotites, Ni is hosted by a range of minerals, including hydrous phases such as phlogopite and amphibole in addition to olivine and orthopyroxene. The lower melting point of these hydrous phases makes Ni in phlogopite a potentially significant contributor to the Ni enrichment of mantle melts from metasomatised assemblages. We analyse a suite of phlogopite-bearing mantle rocks which display variably metasomatised assemblages using SEM mapping to quantify mineral assemblages, and laser ablation ICP-MS to determine the Ni deportment in these rocks. Phlogopite in hydrous peridotites contains 859–1126 ppm Ni equating to ~ 12% of the bulk Ni content in an assemblage containing 25% phlogopite. Mica-Amphibole-Rutile-Ilmenite-Diopside rocks contain phlogopite with 428–715 ppm Ni, which can contribute up to 50% of the bulk Ni in an assemblage of 30% phlogopite. At temperatures below the dry peridotite solidus (< 1300 °C), phlogopite can become a significant contributor of Ni to mantle melts. Thus, partial melting of metasomatised hydrous assemblages can produce Ni-fertile mafic-ultramafic magmas without substantial temperature perturbations such as those associated with mantle plumes. This opens up a range of geodynamic settings for Ni sulfide fertility, away from large igneous provinces and their plumbing systems, into settings such as orogenic belts, arcs and intraplate rifts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mineralium Deposita
Mineralium Deposita 地学-地球化学与地球物理
CiteScore
11.00
自引率
6.20%
发文量
61
审稿时长
6 months
期刊介绍: The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信