{"title":"偏爱蔗糖的肠道微生物通过产生外多糖来防止宿主肥胖","authors":"Hidenori Shimizu, Junki Miyamoto, Keiko Hisa, Ryuji Ohue-Kitano, Hiromi Takada, Mayu Yamano, Akari Nishida, Daiki Sasahara, Yuki Masujima, Keita Watanabe, Shota Nishikawa, Sakura Takahashi, Takako Ikeda, Yuya Nakajima, Naofumi Yoshida, Chiaki Matsuzaki, Takuya Kageyama, Ibuki Hayashi, Akari Matsuki, Ryo Akashi, Seiichi Kitahama, Masako Ueyama, Takumi Murakami, Shinsuke Inuki, Junichiro Irie, Noriko Satoh-Asahara, Hirokazu Toju, Hiroshi Mori, Shinji Nakaoka, Tomoya Yamashita, Atsushi Toyoda, Kenji Yamamoto, Hiroaki Ohno, Takane Katayama, Hiroshi Itoh, Ikuo Kimura","doi":"10.1038/s41467-025-56470-0","DOIUrl":null,"url":null,"abstract":"<p>Commensal bacteria affect host health by producing various metabolites from dietary carbohydrates via bacterial glycometabolism; however, the underlying mechanism of action remains unclear. Here, we identified <i>Streptococcus salivarius</i> as a unique anti-obesity commensal bacterium. We found that <i>S. salivarius</i> may prevent host obesity caused by excess sucrose intake via the exopolysaccharide (EPS) –short-chain fatty acid (SCFA) –carbohydrate metabolic axis in male mice. Healthy human donor-derived <i>S. salivarius</i> produced high EPS levels from sucrose but not from other sugars. <i>S. salivarius</i> abundance was significantly decreased in human donors with obesity compared with that in healthy donors, and the EPS–SCFA bacterial carbohydrate metabolic process was attenuated. Our findings reveal an important mechanism by which host–commensal interactions in glycometabolism affect energy regulation, suggesting an approach for preventing lifestyle-related diseases via prebiotics and probiotics by targeting bacteria and EPS metabolites.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"28 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sucrose-preferring gut microbes prevent host obesity by producing exopolysaccharides\",\"authors\":\"Hidenori Shimizu, Junki Miyamoto, Keiko Hisa, Ryuji Ohue-Kitano, Hiromi Takada, Mayu Yamano, Akari Nishida, Daiki Sasahara, Yuki Masujima, Keita Watanabe, Shota Nishikawa, Sakura Takahashi, Takako Ikeda, Yuya Nakajima, Naofumi Yoshida, Chiaki Matsuzaki, Takuya Kageyama, Ibuki Hayashi, Akari Matsuki, Ryo Akashi, Seiichi Kitahama, Masako Ueyama, Takumi Murakami, Shinsuke Inuki, Junichiro Irie, Noriko Satoh-Asahara, Hirokazu Toju, Hiroshi Mori, Shinji Nakaoka, Tomoya Yamashita, Atsushi Toyoda, Kenji Yamamoto, Hiroaki Ohno, Takane Katayama, Hiroshi Itoh, Ikuo Kimura\",\"doi\":\"10.1038/s41467-025-56470-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Commensal bacteria affect host health by producing various metabolites from dietary carbohydrates via bacterial glycometabolism; however, the underlying mechanism of action remains unclear. Here, we identified <i>Streptococcus salivarius</i> as a unique anti-obesity commensal bacterium. We found that <i>S. salivarius</i> may prevent host obesity caused by excess sucrose intake via the exopolysaccharide (EPS) –short-chain fatty acid (SCFA) –carbohydrate metabolic axis in male mice. Healthy human donor-derived <i>S. salivarius</i> produced high EPS levels from sucrose but not from other sugars. <i>S. salivarius</i> abundance was significantly decreased in human donors with obesity compared with that in healthy donors, and the EPS–SCFA bacterial carbohydrate metabolic process was attenuated. Our findings reveal an important mechanism by which host–commensal interactions in glycometabolism affect energy regulation, suggesting an approach for preventing lifestyle-related diseases via prebiotics and probiotics by targeting bacteria and EPS metabolites.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-56470-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56470-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Sucrose-preferring gut microbes prevent host obesity by producing exopolysaccharides
Commensal bacteria affect host health by producing various metabolites from dietary carbohydrates via bacterial glycometabolism; however, the underlying mechanism of action remains unclear. Here, we identified Streptococcus salivarius as a unique anti-obesity commensal bacterium. We found that S. salivarius may prevent host obesity caused by excess sucrose intake via the exopolysaccharide (EPS) –short-chain fatty acid (SCFA) –carbohydrate metabolic axis in male mice. Healthy human donor-derived S. salivarius produced high EPS levels from sucrose but not from other sugars. S. salivarius abundance was significantly decreased in human donors with obesity compared with that in healthy donors, and the EPS–SCFA bacterial carbohydrate metabolic process was attenuated. Our findings reveal an important mechanism by which host–commensal interactions in glycometabolism affect energy regulation, suggesting an approach for preventing lifestyle-related diseases via prebiotics and probiotics by targeting bacteria and EPS metabolites.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.