与精神疾病相关的内部状态电路的总体成像:综述。

IF 4.8 2区 医学 Q1 NEUROSCIENCES
Neurophotonics Pub Date : 2025-01-01 Epub Date: 2025-01-28 DOI:10.1117/1.NPh.12.S1.S14607
Sophia Arruda Da Costa E Silva, Nicholas J McDonald, Arushi Chamaria, Joseph M Stujenske
{"title":"与精神疾病相关的内部状态电路的总体成像:综述。","authors":"Sophia Arruda Da Costa E Silva, Nicholas J McDonald, Arushi Chamaria, Joseph M Stujenske","doi":"10.1117/1.NPh.12.S1.S14607","DOIUrl":null,"url":null,"abstract":"<p><p>Internal states involve brain-wide changes that subserve coordinated behavioral and physiological responses for adaptation to changing environments and body states. Investigations of single neurons or small populations have yielded exciting discoveries for the field of neuroscience, but it has been increasingly clear that the encoding of internal states involves the simultaneous representation of multiple different variables in distributed neural ensembles. Thus, an understanding of the representation and regulation of internal states requires capturing large population activity and benefits from approaches that allow for parsing intermingled, genetically defined cell populations. We will explain imaging technologies that permit recording from large populations of single neurons in rodents and the unique capabilities of these technologies in comparison to electrophysiological methods. We will focus on findings for appetitive and aversive states given their high relevance to a wide range of psychiatric disorders and briefly explain how these approaches have been applied to models of psychiatric disease in rodents. We discuss challenges for studying internal states which must be addressed with future studies as well as the therapeutic implications of findings from rodents for improving treatments for psychiatric diseases.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"12 Suppl 1","pages":"S14607"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772092/pdf/","citationCount":"0","resultStr":"{\"title\":\"Population imaging of internal state circuits relevant to psychiatric disease: a review.\",\"authors\":\"Sophia Arruda Da Costa E Silva, Nicholas J McDonald, Arushi Chamaria, Joseph M Stujenske\",\"doi\":\"10.1117/1.NPh.12.S1.S14607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Internal states involve brain-wide changes that subserve coordinated behavioral and physiological responses for adaptation to changing environments and body states. Investigations of single neurons or small populations have yielded exciting discoveries for the field of neuroscience, but it has been increasingly clear that the encoding of internal states involves the simultaneous representation of multiple different variables in distributed neural ensembles. Thus, an understanding of the representation and regulation of internal states requires capturing large population activity and benefits from approaches that allow for parsing intermingled, genetically defined cell populations. We will explain imaging technologies that permit recording from large populations of single neurons in rodents and the unique capabilities of these technologies in comparison to electrophysiological methods. We will focus on findings for appetitive and aversive states given their high relevance to a wide range of psychiatric disorders and briefly explain how these approaches have been applied to models of psychiatric disease in rodents. We discuss challenges for studying internal states which must be addressed with future studies as well as the therapeutic implications of findings from rodents for improving treatments for psychiatric diseases.</p>\",\"PeriodicalId\":54335,\"journal\":{\"name\":\"Neurophotonics\",\"volume\":\"12 Suppl 1\",\"pages\":\"S14607\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772092/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurophotonics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.NPh.12.S1.S14607\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.12.S1.S14607","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

内部状态涉及整个大脑的变化,这些变化为适应不断变化的环境和身体状态而协调行为和生理反应。对单个神经元或小群体的研究已经为神经科学领域带来了令人兴奋的发现,但越来越清楚的是,内部状态的编码涉及分布式神经系统中多个不同变量的同时表示。因此,对内部状态的表征和调控的理解需要捕获大量的群体活动,并从允许分析混合的、遗传定义的细胞群体的方法中获益。我们将解释允许记录啮齿动物大量单个神经元的成像技术,以及与电生理方法相比,这些技术的独特功能。我们将重点关注食欲和厌恶状态的发现,因为它们与广泛的精神疾病高度相关,并简要解释这些方法如何应用于啮齿动物的精神疾病模型。我们讨论了研究内部状态的挑战,这些挑战必须在未来的研究中解决,以及啮齿动物研究结果对改善精神疾病治疗的治疗意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Population imaging of internal state circuits relevant to psychiatric disease: a review.

Internal states involve brain-wide changes that subserve coordinated behavioral and physiological responses for adaptation to changing environments and body states. Investigations of single neurons or small populations have yielded exciting discoveries for the field of neuroscience, but it has been increasingly clear that the encoding of internal states involves the simultaneous representation of multiple different variables in distributed neural ensembles. Thus, an understanding of the representation and regulation of internal states requires capturing large population activity and benefits from approaches that allow for parsing intermingled, genetically defined cell populations. We will explain imaging technologies that permit recording from large populations of single neurons in rodents and the unique capabilities of these technologies in comparison to electrophysiological methods. We will focus on findings for appetitive and aversive states given their high relevance to a wide range of psychiatric disorders and briefly explain how these approaches have been applied to models of psychiatric disease in rodents. We discuss challenges for studying internal states which must be addressed with future studies as well as the therapeutic implications of findings from rodents for improving treatments for psychiatric diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurophotonics
Neurophotonics Neuroscience-Neuroscience (miscellaneous)
CiteScore
7.20
自引率
11.30%
发文量
114
审稿时长
21 weeks
期刊介绍: At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信