{"title":"多柔比星的新兴研究和未来方向:快照。","authors":"Saket Jitendre Sinha, Bhupinder Kumar, Chandra Prakash Prasad, Shyam Singh Chauhan, Manish Kumar","doi":"10.31557/APJCP.2025.26.1.5","DOIUrl":null,"url":null,"abstract":"<p><p>Doxorubicin, a widely used anthracycline antibiotic, has been a cornerstone in cancer chemotherapy since the 1960s. In addition to doxorubicin, anthracycline chemotherapy medications include daunorubicin, idarubicin, and epirubicin. For many years, doxorubicin has been the chemotherapy drug of choice for treating a broad variety of cancers. Despite its efficacy, doxorubicin therapy is hindered by serious side effects, primarily cardiotoxicity, and the challenges of drug resistance. Recent research has focused on optimizing doxorubicin's therapeutic index by developing cardioprotective strategies, such as dexrazoxane, and utilizing non-invasive monitoring techniques to reduce cardiac risk. To counteract drug resistance, innovative formulations like nanoparticle-based delivery systems, enhance targeted drug delivery and overcome cellular resistance mechanisms. Furthermore, using combination approaches involving immunotherapy, photodynamic therapy, and genetic modulation, offer promising synergies to maximize tumor eradication. Personalized approaches, supported by pharmacogenomics and predictive biomarkers, are enhancing individualized treatment regimens, aiming to increase effectiveness and minimize toxicity. Future research on doxorubicin focuses on developing advanced drug delivery systems, such as nanoparticle and liposomal formulations, to enhance targeted delivery, minimize systemic toxicity, and improve therapeutic precision. Efforts are also underway to design combination therapies that integrate doxorubicin with immunotherapies, photodynamic approaches, and gene-based treatments, aiming to overcome resistance and increase tumor-specific effects. These advancements signify a transition toward more personalized and effective doxorubicin-based cancer therapies, prioritizing reduced side effects and improved patient outcomes. This article focusses on the ongoing innovations aimed at maximizing the therapeutic potential of doxorubicin while addressing its limitations.</p>","PeriodicalId":55451,"journal":{"name":"Asian Pacific Journal of Cancer Prevention","volume":"26 1","pages":"5-15"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging Research and Future Directions on Doxorubicin: A Snapshot.\",\"authors\":\"Saket Jitendre Sinha, Bhupinder Kumar, Chandra Prakash Prasad, Shyam Singh Chauhan, Manish Kumar\",\"doi\":\"10.31557/APJCP.2025.26.1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Doxorubicin, a widely used anthracycline antibiotic, has been a cornerstone in cancer chemotherapy since the 1960s. In addition to doxorubicin, anthracycline chemotherapy medications include daunorubicin, idarubicin, and epirubicin. For many years, doxorubicin has been the chemotherapy drug of choice for treating a broad variety of cancers. Despite its efficacy, doxorubicin therapy is hindered by serious side effects, primarily cardiotoxicity, and the challenges of drug resistance. Recent research has focused on optimizing doxorubicin's therapeutic index by developing cardioprotective strategies, such as dexrazoxane, and utilizing non-invasive monitoring techniques to reduce cardiac risk. To counteract drug resistance, innovative formulations like nanoparticle-based delivery systems, enhance targeted drug delivery and overcome cellular resistance mechanisms. Furthermore, using combination approaches involving immunotherapy, photodynamic therapy, and genetic modulation, offer promising synergies to maximize tumor eradication. Personalized approaches, supported by pharmacogenomics and predictive biomarkers, are enhancing individualized treatment regimens, aiming to increase effectiveness and minimize toxicity. Future research on doxorubicin focuses on developing advanced drug delivery systems, such as nanoparticle and liposomal formulations, to enhance targeted delivery, minimize systemic toxicity, and improve therapeutic precision. Efforts are also underway to design combination therapies that integrate doxorubicin with immunotherapies, photodynamic approaches, and gene-based treatments, aiming to overcome resistance and increase tumor-specific effects. These advancements signify a transition toward more personalized and effective doxorubicin-based cancer therapies, prioritizing reduced side effects and improved patient outcomes. This article focusses on the ongoing innovations aimed at maximizing the therapeutic potential of doxorubicin while addressing its limitations.</p>\",\"PeriodicalId\":55451,\"journal\":{\"name\":\"Asian Pacific Journal of Cancer Prevention\",\"volume\":\"26 1\",\"pages\":\"5-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Pacific Journal of Cancer Prevention\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31557/APJCP.2025.26.1.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Pacific Journal of Cancer Prevention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31557/APJCP.2025.26.1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Emerging Research and Future Directions on Doxorubicin: A Snapshot.
Doxorubicin, a widely used anthracycline antibiotic, has been a cornerstone in cancer chemotherapy since the 1960s. In addition to doxorubicin, anthracycline chemotherapy medications include daunorubicin, idarubicin, and epirubicin. For many years, doxorubicin has been the chemotherapy drug of choice for treating a broad variety of cancers. Despite its efficacy, doxorubicin therapy is hindered by serious side effects, primarily cardiotoxicity, and the challenges of drug resistance. Recent research has focused on optimizing doxorubicin's therapeutic index by developing cardioprotective strategies, such as dexrazoxane, and utilizing non-invasive monitoring techniques to reduce cardiac risk. To counteract drug resistance, innovative formulations like nanoparticle-based delivery systems, enhance targeted drug delivery and overcome cellular resistance mechanisms. Furthermore, using combination approaches involving immunotherapy, photodynamic therapy, and genetic modulation, offer promising synergies to maximize tumor eradication. Personalized approaches, supported by pharmacogenomics and predictive biomarkers, are enhancing individualized treatment regimens, aiming to increase effectiveness and minimize toxicity. Future research on doxorubicin focuses on developing advanced drug delivery systems, such as nanoparticle and liposomal formulations, to enhance targeted delivery, minimize systemic toxicity, and improve therapeutic precision. Efforts are also underway to design combination therapies that integrate doxorubicin with immunotherapies, photodynamic approaches, and gene-based treatments, aiming to overcome resistance and increase tumor-specific effects. These advancements signify a transition toward more personalized and effective doxorubicin-based cancer therapies, prioritizing reduced side effects and improved patient outcomes. This article focusses on the ongoing innovations aimed at maximizing the therapeutic potential of doxorubicin while addressing its limitations.
期刊介绍:
Cancer is a very complex disease. While many aspects of carcinoge-nesis and oncogenesis are known, cancer control and prevention at the community level is however still in its infancy. Much more work needs to be done and many more steps need to be taken before effective strategies are developed. The multidisciplinary approaches and efforts to understand and control cancer in an effective and efficient manner, require highly trained scientists in all branches of the cancer sciences, from cellular and molecular aspects to patient care and palliation.
The Asia Pacific Organization for Cancer Prevention (APOCP) and its official publication, the Asia Pacific Journal of Cancer Prevention (APJCP), have served the community of cancer scientists very well and intends to continue to serve in this capacity to the best of its abilities. One of the objectives of the APOCP is to provide all relevant and current scientific information on the whole spectrum of cancer sciences. They aim to do this by providing a forum for communication and propagation of original and innovative research findings that have relevance to understanding the etiology, progression, treatment, and survival of patients, through their journal. The APJCP with its distinguished, diverse, and Asia-wide team of editors, reviewers, and readers, ensure the highest standards of research communication within the cancer sciences community across Asia as well as globally.
The APJCP publishes original research results under the following categories:
-Epidemiology, detection and screening.
-Cellular research and bio-markers.
-Identification of bio-targets and agents with novel mechanisms of action.
-Optimal clinical use of existing anti-cancer agents, including combination therapies.
-Radiation and surgery.
-Palliative care.
-Patient adherence, quality of life, satisfaction.
-Health economic evaluations.