视觉皮层兴奋性微电路组织原理。

IF 33.2 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
The Innovation Pub Date : 2024-12-12 eCollection Date: 2025-01-06 DOI:10.1016/j.xinn.2024.100735
Christina Y C Chou, Hovy H W Wong, Connie Guo, Kiminou E Boukoulou, Cleo Huang, Javid Jannat, Tal Klimenko, Vivian Y Li, Tasha A Liang, Vivian C Wu, P Jesper Sjöström
{"title":"视觉皮层兴奋性微电路组织原理。","authors":"Christina Y C Chou, Hovy H W Wong, Connie Guo, Kiminou E Boukoulou, Cleo Huang, Javid Jannat, Tal Klimenko, Vivian Y Li, Tasha A Liang, Vivian C Wu, P Jesper Sjöström","doi":"10.1016/j.xinn.2024.100735","DOIUrl":null,"url":null,"abstract":"<p><p>Synapse-specific connectivity and dynamics determine microcircuit function but are challenging to explore with classic paired recordings due to their low throughput. We therefore implemented optomapping, a ∼100-fold faster two-photon optogenetic method. In mouse primary visual cortex (V1), we optomapped 30,454 candidate inputs to reveal 1,790 excitatory inputs to pyramidal, basket, and Martinotti cells. Across these cell types, log-normal distribution of synaptic efficacies emerged as a principle. For pyramidal cells, optomapping reproduced the canonical circuit but unexpectedly uncovered that the excitation of basket cells concentrated to layer 5 and that of Martinotti cells dominated in layer 2/3. The excitation of basket cells was stronger and reached farther than the excitation of pyramidal cells, which may promote stability. Short-term plasticity surprisingly depended on cortical layer in addition to target cell. Finally, optomapping revealed an overrepresentation of shared inputs for interconnected layer-6 pyramidal cells. Thus, by resolving the throughput problem, optomapping uncovered hitherto unappreciated principles of V1 structure.</p>","PeriodicalId":36121,"journal":{"name":"The Innovation","volume":"6 1","pages":"100735"},"PeriodicalIF":33.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763898/pdf/","citationCount":"0","resultStr":"{\"title\":\"Principles of visual cortex excitatory microcircuit organization.\",\"authors\":\"Christina Y C Chou, Hovy H W Wong, Connie Guo, Kiminou E Boukoulou, Cleo Huang, Javid Jannat, Tal Klimenko, Vivian Y Li, Tasha A Liang, Vivian C Wu, P Jesper Sjöström\",\"doi\":\"10.1016/j.xinn.2024.100735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Synapse-specific connectivity and dynamics determine microcircuit function but are challenging to explore with classic paired recordings due to their low throughput. We therefore implemented optomapping, a ∼100-fold faster two-photon optogenetic method. In mouse primary visual cortex (V1), we optomapped 30,454 candidate inputs to reveal 1,790 excitatory inputs to pyramidal, basket, and Martinotti cells. Across these cell types, log-normal distribution of synaptic efficacies emerged as a principle. For pyramidal cells, optomapping reproduced the canonical circuit but unexpectedly uncovered that the excitation of basket cells concentrated to layer 5 and that of Martinotti cells dominated in layer 2/3. The excitation of basket cells was stronger and reached farther than the excitation of pyramidal cells, which may promote stability. Short-term plasticity surprisingly depended on cortical layer in addition to target cell. Finally, optomapping revealed an overrepresentation of shared inputs for interconnected layer-6 pyramidal cells. Thus, by resolving the throughput problem, optomapping uncovered hitherto unappreciated principles of V1 structure.</p>\",\"PeriodicalId\":36121,\"journal\":{\"name\":\"The Innovation\",\"volume\":\"6 1\",\"pages\":\"100735\"},\"PeriodicalIF\":33.2000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763898/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Innovation\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xinn.2024.100735\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/6 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Innovation","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1016/j.xinn.2024.100735","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

突触特异性连接和动态决定了微电路功能,但由于其低吞吐量,传统配对录音的探索具有挑战性。因此,我们实现了光mapping,这是一种速度快100倍的双光子光遗传方法。在小鼠初级视觉皮层(V1)中,我们对30,454个候选输入进行了光定位,以揭示锥体、篮状和Martinotti细胞的1,790个兴奋性输入。在这些细胞类型中,突触效应的对数正态分布作为一个原则出现。对于锥体细胞,光测重现了典型电路,但意外地发现篮状细胞的兴奋集中在第5层,而Martinotti细胞的兴奋主要在第2/3层。篮状细胞的兴奋比锥体细胞的兴奋更强,到达的距离更远,这可能促进了稳定性。短期可塑性除了依赖靶细胞外,还依赖于皮层。最后,optommapping揭示了共享输入在互连的第6层锥体细胞中的过度表示。因此,通过解决吞吐量问题,optommapping揭示了迄今为止未被理解的V1结构原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Principles of visual cortex excitatory microcircuit organization.

Synapse-specific connectivity and dynamics determine microcircuit function but are challenging to explore with classic paired recordings due to their low throughput. We therefore implemented optomapping, a ∼100-fold faster two-photon optogenetic method. In mouse primary visual cortex (V1), we optomapped 30,454 candidate inputs to reveal 1,790 excitatory inputs to pyramidal, basket, and Martinotti cells. Across these cell types, log-normal distribution of synaptic efficacies emerged as a principle. For pyramidal cells, optomapping reproduced the canonical circuit but unexpectedly uncovered that the excitation of basket cells concentrated to layer 5 and that of Martinotti cells dominated in layer 2/3. The excitation of basket cells was stronger and reached farther than the excitation of pyramidal cells, which may promote stability. Short-term plasticity surprisingly depended on cortical layer in addition to target cell. Finally, optomapping revealed an overrepresentation of shared inputs for interconnected layer-6 pyramidal cells. Thus, by resolving the throughput problem, optomapping uncovered hitherto unappreciated principles of V1 structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Innovation
The Innovation MULTIDISCIPLINARY SCIENCES-
CiteScore
38.30
自引率
1.20%
发文量
134
审稿时长
6 weeks
期刊介绍: The Innovation is an interdisciplinary journal that aims to promote scientific application. It publishes cutting-edge research and high-quality reviews in various scientific disciplines, including physics, chemistry, materials, nanotechnology, biology, translational medicine, geoscience, and engineering. The journal adheres to the peer review and publishing standards of Cell Press journals. The Innovation is committed to serving scientists and the public. It aims to publish significant advances promptly and provides a transparent exchange platform. The journal also strives to efficiently promote the translation from scientific discovery to technological achievements and rapidly disseminate scientific findings worldwide. Indexed in the following databases, The Innovation has visibility in Scopus, Directory of Open Access Journals (DOAJ), Web of Science, Emerging Sources Citation Index (ESCI), PubMed Central, Compendex (previously Ei index), INSPEC, and CABI A&I.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信