{"title":"多类分类中有效过采样和欠采样的混合聚类策略。","authors":"Amirreza Salehi, Majid Khedmati","doi":"10.1038/s41598-024-84786-2","DOIUrl":null,"url":null,"abstract":"<p><p>Multiclass imbalance is a challenging problem in real-world datasets, where certain classes may have a low number of samples because they correspond to rare occurrences. To address the challenge of multiclass imbalance, this paper introduces a novel hybrid cluster-based oversampling and undersampling (HCBOU) technique. By clustering and separating classes into majority and minority categories, this algorithm retains the most information during undersampling while generating efficient data in the minority class. The classification is carried out using one-vs-one and one-vs-all decomposition schemes. Extensive experimentation was carried out on 30 datasets to evaluate the proposed algorithm's performance. The results were subsequently compared with those of several state-of-the-art algorithms. Based on the results, the proposed algorithm outperforms the competing algorithms under different scenarios. Finally, The HCBOU algorithm demonstrated robust performance across varying class imbalance levels, highlighting its effectiveness in handling imbalanced datasets.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"3460"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772689/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hybrid clustering strategies for effective oversampling and undersampling in multiclass classification.\",\"authors\":\"Amirreza Salehi, Majid Khedmati\",\"doi\":\"10.1038/s41598-024-84786-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiclass imbalance is a challenging problem in real-world datasets, where certain classes may have a low number of samples because they correspond to rare occurrences. To address the challenge of multiclass imbalance, this paper introduces a novel hybrid cluster-based oversampling and undersampling (HCBOU) technique. By clustering and separating classes into majority and minority categories, this algorithm retains the most information during undersampling while generating efficient data in the minority class. The classification is carried out using one-vs-one and one-vs-all decomposition schemes. Extensive experimentation was carried out on 30 datasets to evaluate the proposed algorithm's performance. The results were subsequently compared with those of several state-of-the-art algorithms. Based on the results, the proposed algorithm outperforms the competing algorithms under different scenarios. Finally, The HCBOU algorithm demonstrated robust performance across varying class imbalance levels, highlighting its effectiveness in handling imbalanced datasets.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"3460\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772689/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-84786-2\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-84786-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Hybrid clustering strategies for effective oversampling and undersampling in multiclass classification.
Multiclass imbalance is a challenging problem in real-world datasets, where certain classes may have a low number of samples because they correspond to rare occurrences. To address the challenge of multiclass imbalance, this paper introduces a novel hybrid cluster-based oversampling and undersampling (HCBOU) technique. By clustering and separating classes into majority and minority categories, this algorithm retains the most information during undersampling while generating efficient data in the minority class. The classification is carried out using one-vs-one and one-vs-all decomposition schemes. Extensive experimentation was carried out on 30 datasets to evaluate the proposed algorithm's performance. The results were subsequently compared with those of several state-of-the-art algorithms. Based on the results, the proposed algorithm outperforms the competing algorithms under different scenarios. Finally, The HCBOU algorithm demonstrated robust performance across varying class imbalance levels, highlighting its effectiveness in handling imbalanced datasets.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.