受夜行昆虫复眼启发的光学微纳米结构的激光3D打印和光学表征。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Bogdan Stefanita Calin, Roxana Cristina Popescu, Eugenia Tanasa, Irina Alexandra Paun
{"title":"受夜行昆虫复眼启发的光学微纳米结构的激光3D打印和光学表征。","authors":"Bogdan Stefanita Calin, Roxana Cristina Popescu, Eugenia Tanasa, Irina Alexandra Paun","doi":"10.1038/s41598-025-85829-y","DOIUrl":null,"url":null,"abstract":"<p><p>Nature offers unique examples that help humans produce artificial systems which mimic specific functions of living organisms and provide solutions to complex technical problems of the modern world. For example, the development of 3D micro-nanostructures that mimic nocturnal insect eyes (optimized for night vision), emerges as promising technology for detection in IR spectral region. Here, we report a proof of principle concerning the design and laser 3D printing of all ultrastructural details of nocturnal moth Grapholita Funebrana eyes, for potential use as microlens arrays for IR detection systems. Optimized computer-aided design and laser writing parameters enabled us to reproduce the entire complex architecture of moth compound eyes, with submicrometric spatial accuracy. As such, the laser-imprinted structures consisted in ommatidia-like microstructures with average diameter of about 14 μm, decorated with nipple-like nanopillars between 200 and 400 nm in height and average periodicity of around 450 nm. The dimensions of moth-eye inspired structures deviated by less than 10% from the natural corresponding structures. The optical properties of the moth eyes-inspired microlens arrays were investigated in the infrared (IR) range, between 1000 and 1700 nm. The optical transmission of microlens arrays with nanopillars was up to 17.55% higher than the transmission through microlens arrays without nanopillars. Moreover, the reflection of nanopillar-decorated microlens arrays was up to 0.91% lower than the reflection for microlenses without nanopillars. In addition, the focal spot diameter at 1/e<sup>2</sup> for nanopillar-decorated microlens arrays was of 7.64 μm, representing and improvement of 16.5% of focal spot diameter as compared to microlens arrays without nanopillars. Similarly with the IR region, the reflection measured in the Visible range was higher for microlense arrays with nanopillars than the reflection through microlenses arrays without nanopillars. In contrast, in the Visible range the transmission of nanopillar-decorated microlens arrays was lower than the one for microlense arrays without nanopillars, which could be, most likely, assigned to diffraction losses on the nanopillars.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"3369"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772805/pdf/","citationCount":"0","resultStr":"{\"title\":\"Laser-based 3D printing and optical characterization of optical micro-nanostructures inspired by nocturnal insects compound eyes.\",\"authors\":\"Bogdan Stefanita Calin, Roxana Cristina Popescu, Eugenia Tanasa, Irina Alexandra Paun\",\"doi\":\"10.1038/s41598-025-85829-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nature offers unique examples that help humans produce artificial systems which mimic specific functions of living organisms and provide solutions to complex technical problems of the modern world. For example, the development of 3D micro-nanostructures that mimic nocturnal insect eyes (optimized for night vision), emerges as promising technology for detection in IR spectral region. Here, we report a proof of principle concerning the design and laser 3D printing of all ultrastructural details of nocturnal moth Grapholita Funebrana eyes, for potential use as microlens arrays for IR detection systems. Optimized computer-aided design and laser writing parameters enabled us to reproduce the entire complex architecture of moth compound eyes, with submicrometric spatial accuracy. As such, the laser-imprinted structures consisted in ommatidia-like microstructures with average diameter of about 14 μm, decorated with nipple-like nanopillars between 200 and 400 nm in height and average periodicity of around 450 nm. The dimensions of moth-eye inspired structures deviated by less than 10% from the natural corresponding structures. The optical properties of the moth eyes-inspired microlens arrays were investigated in the infrared (IR) range, between 1000 and 1700 nm. The optical transmission of microlens arrays with nanopillars was up to 17.55% higher than the transmission through microlens arrays without nanopillars. Moreover, the reflection of nanopillar-decorated microlens arrays was up to 0.91% lower than the reflection for microlenses without nanopillars. In addition, the focal spot diameter at 1/e<sup>2</sup> for nanopillar-decorated microlens arrays was of 7.64 μm, representing and improvement of 16.5% of focal spot diameter as compared to microlens arrays without nanopillars. Similarly with the IR region, the reflection measured in the Visible range was higher for microlense arrays with nanopillars than the reflection through microlenses arrays without nanopillars. In contrast, in the Visible range the transmission of nanopillar-decorated microlens arrays was lower than the one for microlense arrays without nanopillars, which could be, most likely, assigned to diffraction losses on the nanopillars.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"3369\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772805/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-85829-y\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-85829-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大自然提供了独特的例子,帮助人类制造模仿生物体特定功能的人工系统,并为现代世界的复杂技术问题提供解决方案。例如,模拟夜行昆虫眼睛的3D微纳米结构(针对夜视进行了优化)的开发,成为红外光谱区域检测的有前途的技术。在这里,我们报告了关于夜行蛾眼睛的所有超微结构细节的设计和激光3D打印的原理证明,用于红外探测系统的微透镜阵列。优化的计算机辅助设计和激光书写参数使我们能够以亚微米级的空间精度重现飞蛾复眼的整个复杂结构。结果表明,激光印迹结构为平均直径约14 μm的小孔状微结构,表面装饰有高度在200 ~ 400 nm之间的乳头状纳米柱,平均周期约为450 nm。蛾眼启发结构的尺寸与自然相应结构的偏差小于10%。研究了蛾眼微透镜阵列在1000 ~ 1700 nm红外范围内的光学特性。有纳米柱的微透镜阵列的光透射率比无纳米柱的微透镜阵列高17.55%。此外,纳米柱修饰微透镜阵列的反射率比无纳米柱修饰微透镜阵列的反射率低0.91%。此外,纳米柱修饰的微透镜阵列在1/e2处的焦斑直径为7.64 μm,比无纳米柱修饰的微透镜阵列焦斑直径提高了16.5%。与红外区域类似,在可见光范围内,有纳米柱的微透镜阵列的反射率高于没有纳米柱的微透镜阵列的反射率。相比之下,在可见光范围内,装饰纳米柱的微透镜阵列的透射率低于没有纳米柱的微透镜阵列,这很可能是由于纳米柱上的衍射损失造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laser-based 3D printing and optical characterization of optical micro-nanostructures inspired by nocturnal insects compound eyes.

Nature offers unique examples that help humans produce artificial systems which mimic specific functions of living organisms and provide solutions to complex technical problems of the modern world. For example, the development of 3D micro-nanostructures that mimic nocturnal insect eyes (optimized for night vision), emerges as promising technology for detection in IR spectral region. Here, we report a proof of principle concerning the design and laser 3D printing of all ultrastructural details of nocturnal moth Grapholita Funebrana eyes, for potential use as microlens arrays for IR detection systems. Optimized computer-aided design and laser writing parameters enabled us to reproduce the entire complex architecture of moth compound eyes, with submicrometric spatial accuracy. As such, the laser-imprinted structures consisted in ommatidia-like microstructures with average diameter of about 14 μm, decorated with nipple-like nanopillars between 200 and 400 nm in height and average periodicity of around 450 nm. The dimensions of moth-eye inspired structures deviated by less than 10% from the natural corresponding structures. The optical properties of the moth eyes-inspired microlens arrays were investigated in the infrared (IR) range, between 1000 and 1700 nm. The optical transmission of microlens arrays with nanopillars was up to 17.55% higher than the transmission through microlens arrays without nanopillars. Moreover, the reflection of nanopillar-decorated microlens arrays was up to 0.91% lower than the reflection for microlenses without nanopillars. In addition, the focal spot diameter at 1/e2 for nanopillar-decorated microlens arrays was of 7.64 μm, representing and improvement of 16.5% of focal spot diameter as compared to microlens arrays without nanopillars. Similarly with the IR region, the reflection measured in the Visible range was higher for microlense arrays with nanopillars than the reflection through microlenses arrays without nanopillars. In contrast, in the Visible range the transmission of nanopillar-decorated microlens arrays was lower than the one for microlense arrays without nanopillars, which could be, most likely, assigned to diffraction losses on the nanopillars.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信