D S Kotova, A A Sinevich, A A Chernyshov, D V Chugunin, Y Jin, W J Miloch
{"title":"南极副极光区的强湍流会削弱卫星导航信号。","authors":"D S Kotova, A A Sinevich, A A Chernyshov, D V Chugunin, Y Jin, W J Miloch","doi":"10.1038/s41598-025-86960-6","DOIUrl":null,"url":null,"abstract":"<p><p>In the subauroral zone at the boundary of the auroral oval in the evening and night hours during geomagnetic disturbances, a narrow (about 1°-2°) and extended structure (several hours in longitude) is formed. It is known as a polarization jet (PJ) or the subauroral ion drift (SAID). The PJ/SAID is a fast westward ion drift and is one of the main signatures of a geomagnetic disturbance in the subauroral ionosphere at the altitudes of the F-layer, when the geomagnetic AE index reaches more than 500 nT. Plasma speed in the PJ/SAID can reach several kilometres per second, and the size of plasma irregularities inside it can reach scales from tens of meters to several hundred meters. Such high velocities and structured plasma can affect trans-ionospheric radio waves and lead to scintillations in the received signal. We show that at the moment of auroral activity intensification, an increase in the magnitude of phase scintillation index (σ<sub>ϕ</sub>) as well as loss of satellite signals lock were observed in the region of the PJ/SAID equatorward of the auroral oval over Dronning Maud Land (Queen Maud Land) in Antarctica. We find that fluctuations inside the PJ/SAID can lead to serious deterioration of radio communication or navigational services. We emphasize the importance of considering the geometry of the beam passing from the GNSS satellite to the receiver on the ground. We highlight the mutual contribution of the PJ/SAID and the diffuse aurora boundary, which are almost impossible to separate in practice. Our results demonstrate the importance of considering the subauroral zone, where very dynamic plasma formations can occur with a strong flow and various-scale irregularities inside that lead to serious interference in satellite communications.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"3458"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772887/pdf/","citationCount":"0","resultStr":"{\"title\":\"Strong turbulent flow in the subauroral region in the Antarctic can deteriorate satellite-based navigation signals.\",\"authors\":\"D S Kotova, A A Sinevich, A A Chernyshov, D V Chugunin, Y Jin, W J Miloch\",\"doi\":\"10.1038/s41598-025-86960-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the subauroral zone at the boundary of the auroral oval in the evening and night hours during geomagnetic disturbances, a narrow (about 1°-2°) and extended structure (several hours in longitude) is formed. It is known as a polarization jet (PJ) or the subauroral ion drift (SAID). The PJ/SAID is a fast westward ion drift and is one of the main signatures of a geomagnetic disturbance in the subauroral ionosphere at the altitudes of the F-layer, when the geomagnetic AE index reaches more than 500 nT. Plasma speed in the PJ/SAID can reach several kilometres per second, and the size of plasma irregularities inside it can reach scales from tens of meters to several hundred meters. Such high velocities and structured plasma can affect trans-ionospheric radio waves and lead to scintillations in the received signal. We show that at the moment of auroral activity intensification, an increase in the magnitude of phase scintillation index (σ<sub>ϕ</sub>) as well as loss of satellite signals lock were observed in the region of the PJ/SAID equatorward of the auroral oval over Dronning Maud Land (Queen Maud Land) in Antarctica. We find that fluctuations inside the PJ/SAID can lead to serious deterioration of radio communication or navigational services. We emphasize the importance of considering the geometry of the beam passing from the GNSS satellite to the receiver on the ground. We highlight the mutual contribution of the PJ/SAID and the diffuse aurora boundary, which are almost impossible to separate in practice. Our results demonstrate the importance of considering the subauroral zone, where very dynamic plasma formations can occur with a strong flow and various-scale irregularities inside that lead to serious interference in satellite communications.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"3458\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772887/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-86960-6\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-86960-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Strong turbulent flow in the subauroral region in the Antarctic can deteriorate satellite-based navigation signals.
In the subauroral zone at the boundary of the auroral oval in the evening and night hours during geomagnetic disturbances, a narrow (about 1°-2°) and extended structure (several hours in longitude) is formed. It is known as a polarization jet (PJ) or the subauroral ion drift (SAID). The PJ/SAID is a fast westward ion drift and is one of the main signatures of a geomagnetic disturbance in the subauroral ionosphere at the altitudes of the F-layer, when the geomagnetic AE index reaches more than 500 nT. Plasma speed in the PJ/SAID can reach several kilometres per second, and the size of plasma irregularities inside it can reach scales from tens of meters to several hundred meters. Such high velocities and structured plasma can affect trans-ionospheric radio waves and lead to scintillations in the received signal. We show that at the moment of auroral activity intensification, an increase in the magnitude of phase scintillation index (σϕ) as well as loss of satellite signals lock were observed in the region of the PJ/SAID equatorward of the auroral oval over Dronning Maud Land (Queen Maud Land) in Antarctica. We find that fluctuations inside the PJ/SAID can lead to serious deterioration of radio communication or navigational services. We emphasize the importance of considering the geometry of the beam passing from the GNSS satellite to the receiver on the ground. We highlight the mutual contribution of the PJ/SAID and the diffuse aurora boundary, which are almost impossible to separate in practice. Our results demonstrate the importance of considering the subauroral zone, where very dynamic plasma formations can occur with a strong flow and various-scale irregularities inside that lead to serious interference in satellite communications.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.