使用双晶体管和双忆阻器增强突触功能的低功耗人工神经元网络。

IF 2.6 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-01-27 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0318009
Keerthi Nalliboyina, Sakthivel Ramachandran
{"title":"使用双晶体管和双忆阻器增强突触功能的低功耗人工神经元网络。","authors":"Keerthi Nalliboyina, Sakthivel Ramachandran","doi":"10.1371/journal.pone.0318009","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial neurons with bio-inspired firing patterns have the potential to significantly improve the performance of neural network computing. The most significant component of an artificial neuron circuit is a large amount of energy consumption. Recent literature has proposed memristors as a promising option for synaptic implementation. In contrast, implementing memristive circuitry through neuron hardware presents significant challenges and is a relevant research topic. This paper describes an efficient circuit-level mixed CMOS memristor artificial neuron network with a memristor synapse model. From this perspective, the paper describes the design of artificial neurons in standard CMOS technology with low power utilization. The neuron circuit response is a modified version of the Morris-Lecar theoretical model. The suggested circuit employs memristor-based artificial neurons with Dual Transistor and Dual Memristor (DTDM) synapse circuit. The proposed neuron network produces a high spiking frequency and low power consumption. According to our research, a memristor-based Morris Lecar (ML) neuron with a DTDM synapse circuit consumes 12.55 pW of power, the spiking frequency is 22.72 kHz, and 2.13 fJ of energy per spike. The simulations were carried out using the Spectre tool with 45 nm CMOS technology.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 1","pages":"e0318009"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771950/pdf/","citationCount":"0","resultStr":"{\"title\":\"Low-power artificial neuron networks with enhanced synaptic functionality using dual transistor and dual memristor.\",\"authors\":\"Keerthi Nalliboyina, Sakthivel Ramachandran\",\"doi\":\"10.1371/journal.pone.0318009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial neurons with bio-inspired firing patterns have the potential to significantly improve the performance of neural network computing. The most significant component of an artificial neuron circuit is a large amount of energy consumption. Recent literature has proposed memristors as a promising option for synaptic implementation. In contrast, implementing memristive circuitry through neuron hardware presents significant challenges and is a relevant research topic. This paper describes an efficient circuit-level mixed CMOS memristor artificial neuron network with a memristor synapse model. From this perspective, the paper describes the design of artificial neurons in standard CMOS technology with low power utilization. The neuron circuit response is a modified version of the Morris-Lecar theoretical model. The suggested circuit employs memristor-based artificial neurons with Dual Transistor and Dual Memristor (DTDM) synapse circuit. The proposed neuron network produces a high spiking frequency and low power consumption. According to our research, a memristor-based Morris Lecar (ML) neuron with a DTDM synapse circuit consumes 12.55 pW of power, the spiking frequency is 22.72 kHz, and 2.13 fJ of energy per spike. The simulations were carried out using the Spectre tool with 45 nm CMOS technology.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 1\",\"pages\":\"e0318009\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771950/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0318009\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0318009","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

具有生物激发模式的人工神经元具有显著提高神经网络计算性能的潜力。人工神经元电路最重要的组成部分是大量的能量消耗。最近的文献已经提出忆阻器作为突触实现的一个有希望的选择。相比之下,通过神经元硬件实现记忆电路提出了重大挑战,是一个相关的研究课题。本文描述了一种高效的电路级混合CMOS忆阻器人工神经元网络,该网络具有忆阻器突触模型。从这个角度出发,本文描述了在低功耗的标准CMOS技术下的人工神经元的设计。神经元回路反应是Morris-Lecar理论模型的改良版。该电路采用基于忆阻器的人工神经元,具有双晶体管和双忆阻器(DTDM)突触电路。所提出的神经元网络产生高尖峰频率和低功耗。根据我们的研究,具有DTDM突触电路的基于记忆电阻器的Morris Lecar (ML)神经元的功耗为12.55 pW,峰值频率为22.72 kHz,每个峰值能量为2.13 fJ。模拟使用45纳米CMOS技术的Spectre工具进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Low-power artificial neuron networks with enhanced synaptic functionality using dual transistor and dual memristor.

Low-power artificial neuron networks with enhanced synaptic functionality using dual transistor and dual memristor.

Low-power artificial neuron networks with enhanced synaptic functionality using dual transistor and dual memristor.

Low-power artificial neuron networks with enhanced synaptic functionality using dual transistor and dual memristor.

Artificial neurons with bio-inspired firing patterns have the potential to significantly improve the performance of neural network computing. The most significant component of an artificial neuron circuit is a large amount of energy consumption. Recent literature has proposed memristors as a promising option for synaptic implementation. In contrast, implementing memristive circuitry through neuron hardware presents significant challenges and is a relevant research topic. This paper describes an efficient circuit-level mixed CMOS memristor artificial neuron network with a memristor synapse model. From this perspective, the paper describes the design of artificial neurons in standard CMOS technology with low power utilization. The neuron circuit response is a modified version of the Morris-Lecar theoretical model. The suggested circuit employs memristor-based artificial neurons with Dual Transistor and Dual Memristor (DTDM) synapse circuit. The proposed neuron network produces a high spiking frequency and low power consumption. According to our research, a memristor-based Morris Lecar (ML) neuron with a DTDM synapse circuit consumes 12.55 pW of power, the spiking frequency is 22.72 kHz, and 2.13 fJ of energy per spike. The simulations were carried out using the Spectre tool with 45 nm CMOS technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信