{"title":"使用双晶体管和双忆阻器增强突触功能的低功耗人工神经元网络。","authors":"Keerthi Nalliboyina, Sakthivel Ramachandran","doi":"10.1371/journal.pone.0318009","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial neurons with bio-inspired firing patterns have the potential to significantly improve the performance of neural network computing. The most significant component of an artificial neuron circuit is a large amount of energy consumption. Recent literature has proposed memristors as a promising option for synaptic implementation. In contrast, implementing memristive circuitry through neuron hardware presents significant challenges and is a relevant research topic. This paper describes an efficient circuit-level mixed CMOS memristor artificial neuron network with a memristor synapse model. From this perspective, the paper describes the design of artificial neurons in standard CMOS technology with low power utilization. The neuron circuit response is a modified version of the Morris-Lecar theoretical model. The suggested circuit employs memristor-based artificial neurons with Dual Transistor and Dual Memristor (DTDM) synapse circuit. The proposed neuron network produces a high spiking frequency and low power consumption. According to our research, a memristor-based Morris Lecar (ML) neuron with a DTDM synapse circuit consumes 12.55 pW of power, the spiking frequency is 22.72 kHz, and 2.13 fJ of energy per spike. The simulations were carried out using the Spectre tool with 45 nm CMOS technology.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 1","pages":"e0318009"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771950/pdf/","citationCount":"0","resultStr":"{\"title\":\"Low-power artificial neuron networks with enhanced synaptic functionality using dual transistor and dual memristor.\",\"authors\":\"Keerthi Nalliboyina, Sakthivel Ramachandran\",\"doi\":\"10.1371/journal.pone.0318009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial neurons with bio-inspired firing patterns have the potential to significantly improve the performance of neural network computing. The most significant component of an artificial neuron circuit is a large amount of energy consumption. Recent literature has proposed memristors as a promising option for synaptic implementation. In contrast, implementing memristive circuitry through neuron hardware presents significant challenges and is a relevant research topic. This paper describes an efficient circuit-level mixed CMOS memristor artificial neuron network with a memristor synapse model. From this perspective, the paper describes the design of artificial neurons in standard CMOS technology with low power utilization. The neuron circuit response is a modified version of the Morris-Lecar theoretical model. The suggested circuit employs memristor-based artificial neurons with Dual Transistor and Dual Memristor (DTDM) synapse circuit. The proposed neuron network produces a high spiking frequency and low power consumption. According to our research, a memristor-based Morris Lecar (ML) neuron with a DTDM synapse circuit consumes 12.55 pW of power, the spiking frequency is 22.72 kHz, and 2.13 fJ of energy per spike. The simulations were carried out using the Spectre tool with 45 nm CMOS technology.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 1\",\"pages\":\"e0318009\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771950/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0318009\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0318009","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Low-power artificial neuron networks with enhanced synaptic functionality using dual transistor and dual memristor.
Artificial neurons with bio-inspired firing patterns have the potential to significantly improve the performance of neural network computing. The most significant component of an artificial neuron circuit is a large amount of energy consumption. Recent literature has proposed memristors as a promising option for synaptic implementation. In contrast, implementing memristive circuitry through neuron hardware presents significant challenges and is a relevant research topic. This paper describes an efficient circuit-level mixed CMOS memristor artificial neuron network with a memristor synapse model. From this perspective, the paper describes the design of artificial neurons in standard CMOS technology with low power utilization. The neuron circuit response is a modified version of the Morris-Lecar theoretical model. The suggested circuit employs memristor-based artificial neurons with Dual Transistor and Dual Memristor (DTDM) synapse circuit. The proposed neuron network produces a high spiking frequency and low power consumption. According to our research, a memristor-based Morris Lecar (ML) neuron with a DTDM synapse circuit consumes 12.55 pW of power, the spiking frequency is 22.72 kHz, and 2.13 fJ of energy per spike. The simulations were carried out using the Spectre tool with 45 nm CMOS technology.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage