{"title":"尽管进行了大量的学习,工作记忆和注意力控制方面的个体差异仍可预测记忆成绩。","authors":"Chong Zhao, Edward K Vogel","doi":"10.1037/xge0001728","DOIUrl":null,"url":null,"abstract":"<p><p>Individual differences in working memory predict a wide range of cognitive abilities. However, little research has been done on whether working memory continues to predict task performance after repetitive learning. Here, we tested whether working memory ability continued to predict long-term memory (LTM) performance for picture sequences even after participants showed massive learning. In Experiments 1-3, subjects performed a source memory task in which they were presented a sequence of 30 objects shown in one of four quadrants and then were tested on each item's position. We repeated this procedure for five times in Experiment 1 and 12 times in Experiments 2 and 3. Interestingly, we discovered that individual differences in working memory continually predicted LTM accuracy across all repetitions. In Experiment 4, we replicated the stable working memory demands with word pairs. In Experiment 5, we generalized the stable working memory demands model to attentional control abilities. Together, these results suggest that people, instead of relying less on working memory, optimized their working memory and attentional control throughout learning. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>","PeriodicalId":15698,"journal":{"name":"Journal of Experimental Psychology: General","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Individual differences in working memory and attentional control continue to predict memory performance despite extensive learning.\",\"authors\":\"Chong Zhao, Edward K Vogel\",\"doi\":\"10.1037/xge0001728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Individual differences in working memory predict a wide range of cognitive abilities. However, little research has been done on whether working memory continues to predict task performance after repetitive learning. Here, we tested whether working memory ability continued to predict long-term memory (LTM) performance for picture sequences even after participants showed massive learning. In Experiments 1-3, subjects performed a source memory task in which they were presented a sequence of 30 objects shown in one of four quadrants and then were tested on each item's position. We repeated this procedure for five times in Experiment 1 and 12 times in Experiments 2 and 3. Interestingly, we discovered that individual differences in working memory continually predicted LTM accuracy across all repetitions. In Experiment 4, we replicated the stable working memory demands with word pairs. In Experiment 5, we generalized the stable working memory demands model to attentional control abilities. Together, these results suggest that people, instead of relying less on working memory, optimized their working memory and attentional control throughout learning. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>\",\"PeriodicalId\":15698,\"journal\":{\"name\":\"Journal of Experimental Psychology: General\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Psychology: General\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/xge0001728\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Psychology: General","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/xge0001728","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
工作记忆的个体差异可预测多种认知能力。然而,关于工作记忆是否能继续预测重复学习后的任务表现的研究却很少。在此,我们测试了工作记忆能力是否能继续预测图片序列的长时记忆(LTM)表现,即使受试者表现出大量学习之后也是如此。在实验 1-3 中,受试者进行了一项源记忆任务,在该任务中,受试者会看到一个由 30 个物体组成的序列,这些物体分别显示在四个象限中的一个象限中,然后受试者会对每个物体的位置进行测试。我们在实验 1 中重复了 5 次这一过程,在实验 2 和 3 中重复了 12 次。有趣的是,我们发现工作记忆的个体差异在所有重复中都能持续预测 LTM 的准确性。在实验 4 中,我们用词对复制了稳定的工作记忆要求。在实验 5 中,我们将稳定工作记忆需求模型推广到注意控制能力上。这些结果表明,人们在整个学习过程中不仅没有减少对工作记忆的依赖,反而优化了工作记忆和注意控制能力。(PsycInfo Database Record (c) 2025 APA, all rights reserved)。
Individual differences in working memory and attentional control continue to predict memory performance despite extensive learning.
Individual differences in working memory predict a wide range of cognitive abilities. However, little research has been done on whether working memory continues to predict task performance after repetitive learning. Here, we tested whether working memory ability continued to predict long-term memory (LTM) performance for picture sequences even after participants showed massive learning. In Experiments 1-3, subjects performed a source memory task in which they were presented a sequence of 30 objects shown in one of four quadrants and then were tested on each item's position. We repeated this procedure for five times in Experiment 1 and 12 times in Experiments 2 and 3. Interestingly, we discovered that individual differences in working memory continually predicted LTM accuracy across all repetitions. In Experiment 4, we replicated the stable working memory demands with word pairs. In Experiment 5, we generalized the stable working memory demands model to attentional control abilities. Together, these results suggest that people, instead of relying less on working memory, optimized their working memory and attentional control throughout learning. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
期刊介绍:
The Journal of Experimental Psychology: General publishes articles describing empirical work that bridges the traditional interests of two or more communities of psychology. The work may touch on issues dealt with in JEP: Learning, Memory, and Cognition, JEP: Human Perception and Performance, JEP: Animal Behavior Processes, or JEP: Applied, but may also concern issues in other subdisciplines of psychology, including social processes, developmental processes, psychopathology, neuroscience, or computational modeling. Articles in JEP: General may be longer than the usual journal publication if necessary, but shorter articles that bridge subdisciplines will also be considered.