基于认知和感觉脑区特征融合的阿尔茨海默病多尺度分析。

Q1 Computer Science
Digital Biomarkers Pub Date : 2024-12-16 eCollection Date: 2025-01-01 DOI:10.1159/000543165
Aya Hassouneh, Alessander Danna-Dos-Santos, Bradley Bazuin, Saad Shebrain, Ikhlas Abdel-Qader
{"title":"基于认知和感觉脑区特征融合的阿尔茨海默病多尺度分析。","authors":"Aya Hassouneh, Alessander Danna-Dos-Santos, Bradley Bazuin, Saad Shebrain, Ikhlas Abdel-Qader","doi":"10.1159/000543165","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This research is focused on early detection of Alzheimer's disease (AD) using a multiscale feature fusion framework, combining biomarkers from memory, vision, and speech regions extracted from magnetic resonance imaging and positron emission tomography images.</p><p><strong>Methods: </strong>Using 2D gray level co-occurrence matrix (2D-GLCM) texture features, volume, standardized uptake value ratios (SUVR), and obesity from different neuroimaging modalities, the study applies various classifiers, demonstrating a feature importance analysis in each region of interest. The research employs four classifiers, namely linear support vector machine, linear discriminant analysis, logistic regression (LR), and logistic regression with stochastic gradient descent (LRSGD) classifiers, to determine feature importance, leading to subsequent validation using a probabilistic neural network classifier.</p><p><strong>Results: </strong>The research highlights the critical role of brain texture features, particularly in memory regions, for AD detection. Significant sex-specific differences are observed, with males showing significance in texture features in memory regions, volume in vision regions, and SUVR in speech regions, while females exhibit significance in texture features in memory and speech regions, and SUVR in vision regions. Additionally, the study analyzes how obesity affects features used in AD prediction models, clarifying its effects on speech and vision regions, particularly brain volume.</p><p><strong>Conclusion: </strong>The findings contribute valuable insights into the effectiveness of feature fusion, sex-specific differences, and the impact of obesity on AD-related biomarkers, paving the way for future research in early AD detection strategies and cognitive impairment classification.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"9 1","pages":"23-39"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771981/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multiscale Analysis of Alzheimer's Disease Using Feature Fusion in Cognitive and Sensory Brain Regions.\",\"authors\":\"Aya Hassouneh, Alessander Danna-Dos-Santos, Bradley Bazuin, Saad Shebrain, Ikhlas Abdel-Qader\",\"doi\":\"10.1159/000543165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>This research is focused on early detection of Alzheimer's disease (AD) using a multiscale feature fusion framework, combining biomarkers from memory, vision, and speech regions extracted from magnetic resonance imaging and positron emission tomography images.</p><p><strong>Methods: </strong>Using 2D gray level co-occurrence matrix (2D-GLCM) texture features, volume, standardized uptake value ratios (SUVR), and obesity from different neuroimaging modalities, the study applies various classifiers, demonstrating a feature importance analysis in each region of interest. The research employs four classifiers, namely linear support vector machine, linear discriminant analysis, logistic regression (LR), and logistic regression with stochastic gradient descent (LRSGD) classifiers, to determine feature importance, leading to subsequent validation using a probabilistic neural network classifier.</p><p><strong>Results: </strong>The research highlights the critical role of brain texture features, particularly in memory regions, for AD detection. Significant sex-specific differences are observed, with males showing significance in texture features in memory regions, volume in vision regions, and SUVR in speech regions, while females exhibit significance in texture features in memory and speech regions, and SUVR in vision regions. Additionally, the study analyzes how obesity affects features used in AD prediction models, clarifying its effects on speech and vision regions, particularly brain volume.</p><p><strong>Conclusion: </strong>The findings contribute valuable insights into the effectiveness of feature fusion, sex-specific differences, and the impact of obesity on AD-related biomarkers, paving the way for future research in early AD detection strategies and cognitive impairment classification.</p>\",\"PeriodicalId\":11242,\"journal\":{\"name\":\"Digital Biomarkers\",\"volume\":\"9 1\",\"pages\":\"23-39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771981/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Biomarkers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000543165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Biomarkers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000543165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是利用多尺度特征融合框架,结合从磁共振成像和正电子发射断层扫描图像中提取的记忆、视觉和语言区域的生物标志物,早期检测阿尔茨海默病(AD)。方法:利用二维灰度共生矩阵(2D- glcm)纹理特征、体积、标准化摄取值比(SUVR)和不同神经成像模式的肥胖,该研究应用了各种分类器,在每个感兴趣的区域展示了特征重要性分析。本研究采用线性支持向量机、线性判别分析、逻辑回归(LR)和随机梯度下降逻辑回归(LRSGD)四种分类器来确定特征重要性,随后使用概率神经网络分类器进行验证。结果:该研究强调了大脑纹理特征,特别是在记忆区域,在AD检测中的关键作用。性别差异显著,男性在记忆区纹理特征、视觉区体积特征和语言区SUVR上表现显著,而女性在记忆区和语言区纹理特征和视觉区SUVR上表现显著。此外,该研究还分析了肥胖如何影响AD预测模型中使用的特征,阐明了肥胖对语言和视觉区域,特别是脑容量的影响。结论:这些发现为特征融合的有效性、性别特异性差异以及肥胖对AD相关生物标志物的影响提供了有价值的见解,为未来AD早期检测策略和认知障碍分类的研究铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale Analysis of Alzheimer's Disease Using Feature Fusion in Cognitive and Sensory Brain Regions.

Introduction: This research is focused on early detection of Alzheimer's disease (AD) using a multiscale feature fusion framework, combining biomarkers from memory, vision, and speech regions extracted from magnetic resonance imaging and positron emission tomography images.

Methods: Using 2D gray level co-occurrence matrix (2D-GLCM) texture features, volume, standardized uptake value ratios (SUVR), and obesity from different neuroimaging modalities, the study applies various classifiers, demonstrating a feature importance analysis in each region of interest. The research employs four classifiers, namely linear support vector machine, linear discriminant analysis, logistic regression (LR), and logistic regression with stochastic gradient descent (LRSGD) classifiers, to determine feature importance, leading to subsequent validation using a probabilistic neural network classifier.

Results: The research highlights the critical role of brain texture features, particularly in memory regions, for AD detection. Significant sex-specific differences are observed, with males showing significance in texture features in memory regions, volume in vision regions, and SUVR in speech regions, while females exhibit significance in texture features in memory and speech regions, and SUVR in vision regions. Additionally, the study analyzes how obesity affects features used in AD prediction models, clarifying its effects on speech and vision regions, particularly brain volume.

Conclusion: The findings contribute valuable insights into the effectiveness of feature fusion, sex-specific differences, and the impact of obesity on AD-related biomarkers, paving the way for future research in early AD detection strategies and cognitive impairment classification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digital Biomarkers
Digital Biomarkers Medicine-Medicine (miscellaneous)
CiteScore
10.60
自引率
0.00%
发文量
12
审稿时长
23 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信