比较转录组分析揭示了玉米中赖氨酸和色氨酸含量增加的机制,该机制是通过对opaque2、opaque16和waxy1基因进行金字塔化来实现的。

IF 2 4区 农林科学 Q2 AGRONOMY
Breeding Science Pub Date : 2024-09-01 Epub Date: 2024-08-14 DOI:10.1270/jsbbs.23051
Peizhen Wu, Yanli Yuan, Zhoujie Ma, Kaiwu Zhang, Lei Deng, Hong Ren, Wenpeng Yang, Wei Wang
{"title":"比较转录组分析揭示了玉米中赖氨酸和色氨酸含量增加的机制,该机制是通过对opaque2、opaque16和waxy1基因进行金字塔化来实现的。","authors":"Peizhen Wu, Yanli Yuan, Zhoujie Ma, Kaiwu Zhang, Lei Deng, Hong Ren, Wenpeng Yang, Wei Wang","doi":"10.1270/jsbbs.23051","DOIUrl":null,"url":null,"abstract":"<p><p>To explore the molecular mechanism behind maize grain quality and use of different gene stacking to improve the nutritional quality of grain, marker-assisted selection (MAS) was used to select three recessive mutant lines containing <i>o2o16wx</i>, along with the double-recessive mutant lines containing <i>o2o16</i>, <i>o2wx</i>, and <i>o16wx</i>. The resulting seeds were taken for transcriptome sequencing analysis 18 days after pollination (DAP). Results: Compared with the recurrent parent genes, in the lysine synthesis pathway, the gene pyramiding lines (<i>o2o16wx</i>, <i>o2wx</i>, and <i>o16wx</i>) revealed that the gene encoding aspartate kinase (AK) was up-regulated and promoted lysine synthesis. In the lysine degradation pathway, 'QCL8010_1' (<i>o2o16wx</i>) revealed that the gene encoding saccharopine dehydrogenase (LKR/SDH) was down-regulated. In addition, the gene pyramiding lines (<i>o2o16wx</i>, <i>o2o16</i>, and <i>o16wx</i>) indicated that the gene encoding 2-oxoglutarate dehydrogenase E1 component (OGDH) was down-regulated, inhibiting the degradation of lysine. In the tryptophan synthesis pathway, the genes encoding anthranilate synthase (AS), anthranilate synthase (APT), and tryptophan synthase (TS) were up-regulated (in <i>o2o16wx</i>, <i>o2o16</i>, <i>o2wx</i>, and <i>o16wx</i>), and promote tryptophan synthesis. In the tryptophan degradation pathway, it was revealed that the genes encoding indole-3-producing oxidase (IAAO) and indole-3-pyruvate monooxygenase (YUCCA) were down-regulated. These results provide a reference for revealing the mechanism of the <i>o2</i>, <i>o16</i>, and <i>wx</i> with different gene pyramiding to improve grain quality in maize.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"74 4","pages":"311-323"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769590/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative transcriptome profiling reveals the mechanism of increasing lysine and tryptophan content through pyramiding <i>opaque2</i>, <i>opaque16</i> and <i>waxy1</i> genes in maize.\",\"authors\":\"Peizhen Wu, Yanli Yuan, Zhoujie Ma, Kaiwu Zhang, Lei Deng, Hong Ren, Wenpeng Yang, Wei Wang\",\"doi\":\"10.1270/jsbbs.23051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To explore the molecular mechanism behind maize grain quality and use of different gene stacking to improve the nutritional quality of grain, marker-assisted selection (MAS) was used to select three recessive mutant lines containing <i>o2o16wx</i>, along with the double-recessive mutant lines containing <i>o2o16</i>, <i>o2wx</i>, and <i>o16wx</i>. The resulting seeds were taken for transcriptome sequencing analysis 18 days after pollination (DAP). Results: Compared with the recurrent parent genes, in the lysine synthesis pathway, the gene pyramiding lines (<i>o2o16wx</i>, <i>o2wx</i>, and <i>o16wx</i>) revealed that the gene encoding aspartate kinase (AK) was up-regulated and promoted lysine synthesis. In the lysine degradation pathway, 'QCL8010_1' (<i>o2o16wx</i>) revealed that the gene encoding saccharopine dehydrogenase (LKR/SDH) was down-regulated. In addition, the gene pyramiding lines (<i>o2o16wx</i>, <i>o2o16</i>, and <i>o16wx</i>) indicated that the gene encoding 2-oxoglutarate dehydrogenase E1 component (OGDH) was down-regulated, inhibiting the degradation of lysine. In the tryptophan synthesis pathway, the genes encoding anthranilate synthase (AS), anthranilate synthase (APT), and tryptophan synthase (TS) were up-regulated (in <i>o2o16wx</i>, <i>o2o16</i>, <i>o2wx</i>, and <i>o16wx</i>), and promote tryptophan synthesis. In the tryptophan degradation pathway, it was revealed that the genes encoding indole-3-producing oxidase (IAAO) and indole-3-pyruvate monooxygenase (YUCCA) were down-regulated. These results provide a reference for revealing the mechanism of the <i>o2</i>, <i>o16</i>, and <i>wx</i> with different gene pyramiding to improve grain quality in maize.</p>\",\"PeriodicalId\":9258,\"journal\":{\"name\":\"Breeding Science\",\"volume\":\"74 4\",\"pages\":\"311-323\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769590/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breeding Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1270/jsbbs.23051\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breeding Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1270/jsbbs.23051","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

为探究玉米籽粒品质的分子机制,并利用不同的基因堆叠方式提高籽粒营养品质,采用标记辅助选择(MAS)技术筛选了含有o2o16wx的3个隐性突变株系,以及含有o2o16、o2wx和o16wx的双隐性突变株系。授粉后18天(DAP)采集种子进行转录组测序分析。结果:与复发亲本基因相比,在赖氨酸合成途径中,基因金字塔系(o2o16wx、o2wx和o16wx)显示编码天冬氨酸激酶(AK)的基因上调,促进了赖氨酸合成。在赖氨酸降解途径中,‘QCL8010_1’ (o2o16wx)显示编码糖精脱氢酶(LKR/SDH)的基因下调。此外,基因金字塔系(o2o16wx、o2o16和o16wx)表明,编码2-氧葡萄糖酸脱氢酶E1组分(OGDH)的基因下调,抑制了赖氨酸的降解。在色氨酸合成途径中,编码anthannilate synthase (AS)、anthannilate synthase (APT)和tryptophan synthase (TS)的基因(o2o16wx、o2o16、o2wx和o16wx)上调,促进色氨酸合成。在色氨酸降解途径中,发现编码吲哚-3-产生氧化酶(IAAO)和吲哚-3-丙酮酸单加氧酶(YUCCA)的基因下调。这些结果为揭示o2、o16和wx不同基因聚合改善玉米籽粒品质的机制提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative transcriptome profiling reveals the mechanism of increasing lysine and tryptophan content through pyramiding opaque2, opaque16 and waxy1 genes in maize.

To explore the molecular mechanism behind maize grain quality and use of different gene stacking to improve the nutritional quality of grain, marker-assisted selection (MAS) was used to select three recessive mutant lines containing o2o16wx, along with the double-recessive mutant lines containing o2o16, o2wx, and o16wx. The resulting seeds were taken for transcriptome sequencing analysis 18 days after pollination (DAP). Results: Compared with the recurrent parent genes, in the lysine synthesis pathway, the gene pyramiding lines (o2o16wx, o2wx, and o16wx) revealed that the gene encoding aspartate kinase (AK) was up-regulated and promoted lysine synthesis. In the lysine degradation pathway, 'QCL8010_1' (o2o16wx) revealed that the gene encoding saccharopine dehydrogenase (LKR/SDH) was down-regulated. In addition, the gene pyramiding lines (o2o16wx, o2o16, and o16wx) indicated that the gene encoding 2-oxoglutarate dehydrogenase E1 component (OGDH) was down-regulated, inhibiting the degradation of lysine. In the tryptophan synthesis pathway, the genes encoding anthranilate synthase (AS), anthranilate synthase (APT), and tryptophan synthase (TS) were up-regulated (in o2o16wx, o2o16, o2wx, and o16wx), and promote tryptophan synthesis. In the tryptophan degradation pathway, it was revealed that the genes encoding indole-3-producing oxidase (IAAO) and indole-3-pyruvate monooxygenase (YUCCA) were down-regulated. These results provide a reference for revealing the mechanism of the o2, o16, and wx with different gene pyramiding to improve grain quality in maize.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Breeding Science
Breeding Science 农林科学-农艺学
CiteScore
4.90
自引率
4.20%
发文量
37
审稿时长
1.5 months
期刊介绍: Breeding Science is published by the Japanese Society of Breeding. Breeding Science publishes research papers, notes and reviews related to breeding. Research Papers are standard original articles. Notes report new cultivars, breeding lines, germplasms, genetic stocks, mapping populations, database, software, and techniques significant and useful for breeding. Reviews summarize recent and historical events related breeding. Manuscripts should be submitted by corresponding author. Corresponding author must have obtained permission from all authors prior to submission. Correspondence, proofs, and charges of excess page and color figures should be handled by the corresponding author.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信