三偏磷酸钠交联多孔玉米淀粉的制备及其吸附性能。

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biopolymers Pub Date : 2025-01-28 DOI:10.1002/bip.70004
Yuxin Liu, Qinghua Pan, Zesheng Liang, Jingqiao Li, Rulong Wu
{"title":"三偏磷酸钠交联多孔玉米淀粉的制备及其吸附性能。","authors":"Yuxin Liu,&nbsp;Qinghua Pan,&nbsp;Zesheng Liang,&nbsp;Jingqiao Li,&nbsp;Rulong Wu","doi":"10.1002/bip.70004","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The crosslinked porous corn starch was prepared by two steps: the native corn starch was hydrolyzed by α-amylase and glucoamylase, then the porous corn was crosslinked by sodium trimetaphosphate (STMP). The morphology and size of granules, spherulites, crystal type, molecular structure, swelling properties, thermal stability and adsorption properties of the crosslinked porous starch were investigated. The results indicated that a lot of holes formed in the porous starch, and the particle size of starch granules decreased. Under the cross-linking action of STMP, the porous starch particles are cross-linked and agglomerated together. The crystalline form of porous starch presents A + V type, and crystallinity increased after crosslinking. The crosslinked porous starches have higher short-range ordering comparing to the porous without crosslinked porous starch. The crosslinking degree, melting enthalpy and melting peak of starch increased with the increase of STMP content. The bulk density and the vibrated density of the porous starch increased after crosslinking. With the increase of the content of STMP, the water and oil absorption of porous starch increased and then decreased. The MB adsorption capacity of crosslinked porous starch has the maximum value with the STMP 20 wt% content. MB adsorption behavior of porous starch is more consistent with the pseudo-second-order kinetic model, and the equilibrium adsorption increased after crosslinking.</p>\n </div>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"116 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and Adsorption Properties of Sodium Trimetaphosphate Crosslinked Porous Corn Starch\",\"authors\":\"Yuxin Liu,&nbsp;Qinghua Pan,&nbsp;Zesheng Liang,&nbsp;Jingqiao Li,&nbsp;Rulong Wu\",\"doi\":\"10.1002/bip.70004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The crosslinked porous corn starch was prepared by two steps: the native corn starch was hydrolyzed by α-amylase and glucoamylase, then the porous corn was crosslinked by sodium trimetaphosphate (STMP). The morphology and size of granules, spherulites, crystal type, molecular structure, swelling properties, thermal stability and adsorption properties of the crosslinked porous starch were investigated. The results indicated that a lot of holes formed in the porous starch, and the particle size of starch granules decreased. Under the cross-linking action of STMP, the porous starch particles are cross-linked and agglomerated together. The crystalline form of porous starch presents A + V type, and crystallinity increased after crosslinking. The crosslinked porous starches have higher short-range ordering comparing to the porous without crosslinked porous starch. The crosslinking degree, melting enthalpy and melting peak of starch increased with the increase of STMP content. The bulk density and the vibrated density of the porous starch increased after crosslinking. With the increase of the content of STMP, the water and oil absorption of porous starch increased and then decreased. The MB adsorption capacity of crosslinked porous starch has the maximum value with the STMP 20 wt% content. MB adsorption behavior of porous starch is more consistent with the pseudo-second-order kinetic model, and the equilibrium adsorption increased after crosslinking.</p>\\n </div>\",\"PeriodicalId\":8866,\"journal\":{\"name\":\"Biopolymers\",\"volume\":\"116 2\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopolymers\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bip.70004\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.70004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

采用α-淀粉酶和葡萄糖淀粉酶水解天然玉米淀粉,再用三甲基磷酸钠(STMP)交联制备多孔玉米淀粉。研究了交联多孔淀粉的颗粒形态和大小、球晶类型、分子结构、膨胀性能、热稳定性和吸附性能。结果表明:多孔淀粉中形成大量孔洞,淀粉颗粒粒径减小;在STMP交联作用下,多孔淀粉颗粒交联团聚在一起。多孔淀粉的结晶形态为A + V型,交联后结晶度提高。与未交联的多孔淀粉相比,交联的多孔淀粉具有更高的近程有序性。淀粉的交联度、熔融焓和熔融峰随STMP含量的增加而增大。交联后多孔淀粉的容重和振动密度增加。随着STMP含量的增加,多孔淀粉的吸水率和吸收率先增大后减小。交联多孔淀粉对MB的吸附量在STMP含量为20%时达到最大值。多孔淀粉对MB的吸附行为更符合准二级动力学模型,交联后平衡吸附量增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Preparation and Adsorption Properties of Sodium Trimetaphosphate Crosslinked Porous Corn Starch

Preparation and Adsorption Properties of Sodium Trimetaphosphate Crosslinked Porous Corn Starch

The crosslinked porous corn starch was prepared by two steps: the native corn starch was hydrolyzed by α-amylase and glucoamylase, then the porous corn was crosslinked by sodium trimetaphosphate (STMP). The morphology and size of granules, spherulites, crystal type, molecular structure, swelling properties, thermal stability and adsorption properties of the crosslinked porous starch were investigated. The results indicated that a lot of holes formed in the porous starch, and the particle size of starch granules decreased. Under the cross-linking action of STMP, the porous starch particles are cross-linked and agglomerated together. The crystalline form of porous starch presents A + V type, and crystallinity increased after crosslinking. The crosslinked porous starches have higher short-range ordering comparing to the porous without crosslinked porous starch. The crosslinking degree, melting enthalpy and melting peak of starch increased with the increase of STMP content. The bulk density and the vibrated density of the porous starch increased after crosslinking. With the increase of the content of STMP, the water and oil absorption of porous starch increased and then decreased. The MB adsorption capacity of crosslinked porous starch has the maximum value with the STMP 20 wt% content. MB adsorption behavior of porous starch is more consistent with the pseudo-second-order kinetic model, and the equilibrium adsorption increased after crosslinking.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biopolymers
Biopolymers 生物-生化与分子生物学
CiteScore
5.30
自引率
0.00%
发文量
48
审稿时长
3 months
期刊介绍: Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信