EmoAtlas:一个融合了心理学词汇、人工智能和网络科学的文本情感网络分析器。

IF 4.6 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL
Alfonso Semeraro, Salvatore Vilella, Riccardo Improta, Edoardo Sebastiano De Duro, Saif M Mohammad, Giancarlo Ruffo, Massimo Stella
{"title":"EmoAtlas:一个融合了心理学词汇、人工智能和网络科学的文本情感网络分析器。","authors":"Alfonso Semeraro, Salvatore Vilella, Riccardo Improta, Edoardo Sebastiano De Duro, Saif M Mohammad, Giancarlo Ruffo, Massimo Stella","doi":"10.3758/s13428-024-02553-7","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce EmoAtlas, a computational library/framework extracting emotions and syntactic/semantic word associations from texts. EmoAtlas combines interpretable artificial intelligence (AI) for syntactic parsing in 18 languages and psychologically validated lexicons for detecting the eight emotions in Plutchik's theory. We show that EmoAtlas can match or surpass transformer-based natural language processing techniques, BERT or large language models like ChatGPT 3.5 or LLaMAntino, in detecting emotions from Italian and English online posts and news articles (e.g., achieving 85.6 <math><mo>%</mo></math> accuracy in detecting anger in posts vs the 68.8 <math><mo>%</mo></math> value of ChatGPT and 89.9% value for BERT). EmoAtlas presents important advantages in terms of speed and absence of fine-tuning, e.g., it runs 12x faster than BERT on the same data. Testing EmoAtlas' and easily trainable transformers' relevance in a psychometric task like reproducing human creativity ratings for 1071 short texts, we find that EmoAtlas and BERT obtain equivalent predictive power (fourfold cross-validation, <math><mrow><mi>ρ</mi> <mo>≈</mo> <mn>0.495</mn></mrow> </math> , <math><mrow><mi>p</mi> <mo><</mo> <msup><mn>10</mn> <mrow><mo>-</mo> <mn>4</mn></mrow> </msup> </mrow> </math> ). Combining BERT's semantic features with EmoAtlas' emotional/syntactic networks of words gets substantially better at estimating creativity rates of stories ( <math><mrow><mi>ρ</mi> <mo>=</mo> <mn>0.628</mn></mrow> </math> , <math><mrow><mi>p</mi> <mo><</mo> <msup><mn>10</mn> <mrow><mo>-</mo> <mn>4</mn></mrow> </msup> </mrow> </math> ). This indicates an interplay between the creativity of narratives and their semantic, emotional, and syntactic structure. Via interpretable emotional profiles and syntactic networks, EmoAtlas can also quantify how emotions are channeled through specific words in texts, e.g., how did customers frame their ideas and emotions towards \"beds\" in hotel reviews? We release EmoAtlas as a standalone \"text as data\" computational tool and discuss its impact in extracting interpretable and reproducible insights from texts.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 2","pages":"77"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EmoAtlas: An emotional network analyzer of texts that merges psychological lexicons, artificial intelligence, and network science.\",\"authors\":\"Alfonso Semeraro, Salvatore Vilella, Riccardo Improta, Edoardo Sebastiano De Duro, Saif M Mohammad, Giancarlo Ruffo, Massimo Stella\",\"doi\":\"10.3758/s13428-024-02553-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce EmoAtlas, a computational library/framework extracting emotions and syntactic/semantic word associations from texts. EmoAtlas combines interpretable artificial intelligence (AI) for syntactic parsing in 18 languages and psychologically validated lexicons for detecting the eight emotions in Plutchik's theory. We show that EmoAtlas can match or surpass transformer-based natural language processing techniques, BERT or large language models like ChatGPT 3.5 or LLaMAntino, in detecting emotions from Italian and English online posts and news articles (e.g., achieving 85.6 <math><mo>%</mo></math> accuracy in detecting anger in posts vs the 68.8 <math><mo>%</mo></math> value of ChatGPT and 89.9% value for BERT). EmoAtlas presents important advantages in terms of speed and absence of fine-tuning, e.g., it runs 12x faster than BERT on the same data. Testing EmoAtlas' and easily trainable transformers' relevance in a psychometric task like reproducing human creativity ratings for 1071 short texts, we find that EmoAtlas and BERT obtain equivalent predictive power (fourfold cross-validation, <math><mrow><mi>ρ</mi> <mo>≈</mo> <mn>0.495</mn></mrow> </math> , <math><mrow><mi>p</mi> <mo><</mo> <msup><mn>10</mn> <mrow><mo>-</mo> <mn>4</mn></mrow> </msup> </mrow> </math> ). Combining BERT's semantic features with EmoAtlas' emotional/syntactic networks of words gets substantially better at estimating creativity rates of stories ( <math><mrow><mi>ρ</mi> <mo>=</mo> <mn>0.628</mn></mrow> </math> , <math><mrow><mi>p</mi> <mo><</mo> <msup><mn>10</mn> <mrow><mo>-</mo> <mn>4</mn></mrow> </msup> </mrow> </math> ). This indicates an interplay between the creativity of narratives and their semantic, emotional, and syntactic structure. Via interpretable emotional profiles and syntactic networks, EmoAtlas can also quantify how emotions are channeled through specific words in texts, e.g., how did customers frame their ideas and emotions towards \\\"beds\\\" in hotel reviews? We release EmoAtlas as a standalone \\\"text as data\\\" computational tool and discuss its impact in extracting interpretable and reproducible insights from texts.</p>\",\"PeriodicalId\":8717,\"journal\":{\"name\":\"Behavior Research Methods\",\"volume\":\"57 2\",\"pages\":\"77\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavior Research Methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3758/s13428-024-02553-7\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02553-7","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍EmoAtlas,一个从文本中提取情感和句法/语义词关联的计算库/框架。EmoAtlas结合了可解释的人工智能(AI)对18种语言的句法分析和心理验证的词汇来检测Plutchik理论中的八种情绪。我们表明,EmoAtlas可以匹配或超过基于变换的自然语言处理技术,BERT或大型语言模型,如ChatGPT 3.5或LLaMAntino,从意大利语和英语在线帖子和新闻文章中检测情绪(例如,在检测帖子中的愤怒方面达到85.6%的准确率,而ChatGPT为68.8%,BERT为89.9%)。EmoAtlas在速度和没有微调方面表现出重要的优势,例如,在相同的数据上,它的运行速度比BERT快12倍。测试EmoAtlas和易于训练的变形金刚在心理测量任务中的相关性,如重现1071个短文本的人类创造力评级,我们发现EmoAtlas和BERT获得了等效的预测能力(四倍交叉验证,ρ≈0.495,p 10 - 4)。将BERT的语义特征与EmoAtlas的词的情感/句法网络相结合,在估计故事的创造力方面得到了显著改善(ρ = 0.628, p 10 - 4)。这表明叙事的创造性与其语义、情感和句法结构之间存在相互作用。通过可解释的情感概况和句法网络,EmoAtlas还可以量化情感是如何通过文本中的特定单词传递的,例如,客户是如何将他们的想法和情感构建到酒店评论中的“床”上的?我们将EmoAtlas作为一个独立的“文本即数据”计算工具发布,并讨论其在从文本中提取可解释和可重复的见解方面的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EmoAtlas: An emotional network analyzer of texts that merges psychological lexicons, artificial intelligence, and network science.

We introduce EmoAtlas, a computational library/framework extracting emotions and syntactic/semantic word associations from texts. EmoAtlas combines interpretable artificial intelligence (AI) for syntactic parsing in 18 languages and psychologically validated lexicons for detecting the eight emotions in Plutchik's theory. We show that EmoAtlas can match or surpass transformer-based natural language processing techniques, BERT or large language models like ChatGPT 3.5 or LLaMAntino, in detecting emotions from Italian and English online posts and news articles (e.g., achieving 85.6 % accuracy in detecting anger in posts vs the 68.8 % value of ChatGPT and 89.9% value for BERT). EmoAtlas presents important advantages in terms of speed and absence of fine-tuning, e.g., it runs 12x faster than BERT on the same data. Testing EmoAtlas' and easily trainable transformers' relevance in a psychometric task like reproducing human creativity ratings for 1071 short texts, we find that EmoAtlas and BERT obtain equivalent predictive power (fourfold cross-validation, ρ 0.495 , p < 10 - 4 ). Combining BERT's semantic features with EmoAtlas' emotional/syntactic networks of words gets substantially better at estimating creativity rates of stories ( ρ = 0.628 , p < 10 - 4 ). This indicates an interplay between the creativity of narratives and their semantic, emotional, and syntactic structure. Via interpretable emotional profiles and syntactic networks, EmoAtlas can also quantify how emotions are channeled through specific words in texts, e.g., how did customers frame their ideas and emotions towards "beds" in hotel reviews? We release EmoAtlas as a standalone "text as data" computational tool and discuss its impact in extracting interpretable and reproducible insights from texts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信