Maimana A. Magdy, Maha M. Abdelrahman, Doaa G. Mohamed, Amal B. Ahmed
{"title":"用色谱法对以三聚氰胺为杂质的抗糖尿病药物进行序次分离。","authors":"Maimana A. Magdy, Maha M. Abdelrahman, Doaa G. Mohamed, Amal B. Ahmed","doi":"10.1186/s13065-025-01385-6","DOIUrl":null,"url":null,"abstract":"<div><p>The study of green analytical chemistry has garnered significant attention in the context of mitigating global environmental contamination. In this study, we present two methodologies for environmentally friendly chromatography that enable simultaneous and specific determination of Saxagliptin (SAX), metformin (MET), and a pharmacopoeial impurity of MET known as melamine (MEL). The initial method employed in this study is High-Performance Thin Layer Chromatography (HPTLC), which utilized 60 F 254 silica gel-coated Mark HPTLC plates on aluminum sheets as the stationary phase. The developing system was made up of a mix of ethyl acetate: methanol: ammonia: glacial acetic acid in a ratio of 6:4:1:0.3 (v/v/v/v). The analysis was performed at a wavelength of 215 nm. The second method employed in this study is ultra-performance liquid chromatography (UPLC). In this method, a C18 column was utilized for the separation process. The mobile phase was made up of a mix of methanol and 0.01 M sodium dodecyl sulfate, with a pH of 3.3 achieved by adding orthophosphoric acid. The ratio of methanol to sodium dodecyl sulfate in the mobile phase was 70:30 (v/v). The flow rate of the mobile phase was established at a rate of 1.5 mL/min. The peaks found and recorded are resolved at a wavelength of 215 nm. The three analytes under investigation were successfully separated and assessed using the recommended protocols. Both methods were validated following the International Council for Harmonization (ICH) recommendations for assessing linearity, range, accuracy, precision, specificity, and robustness. Moreover, the environmental sustainability of the advanced methodologies The assessment has been performed using various instruments, such as the Analytical Eco-Scale, NEMI, GAPI, and AGREE. The utilization of these tools was implemented in order to perform a comprehensive assessment of the environmental sustainability of the methods, as well as to establish a comparison with previously documented approaches. This study was carried out to evaluate the potential environmental implications of the suggested methods and to determine their suitability for concurrent analysis of the examined pharmaceuticals in formula and quality control units.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773764/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sequential separation of anti-diabetic drugs in the presence of melamine as impurity using chromatographic methods\",\"authors\":\"Maimana A. Magdy, Maha M. Abdelrahman, Doaa G. Mohamed, Amal B. Ahmed\",\"doi\":\"10.1186/s13065-025-01385-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study of green analytical chemistry has garnered significant attention in the context of mitigating global environmental contamination. In this study, we present two methodologies for environmentally friendly chromatography that enable simultaneous and specific determination of Saxagliptin (SAX), metformin (MET), and a pharmacopoeial impurity of MET known as melamine (MEL). The initial method employed in this study is High-Performance Thin Layer Chromatography (HPTLC), which utilized 60 F 254 silica gel-coated Mark HPTLC plates on aluminum sheets as the stationary phase. The developing system was made up of a mix of ethyl acetate: methanol: ammonia: glacial acetic acid in a ratio of 6:4:1:0.3 (v/v/v/v). The analysis was performed at a wavelength of 215 nm. The second method employed in this study is ultra-performance liquid chromatography (UPLC). In this method, a C18 column was utilized for the separation process. The mobile phase was made up of a mix of methanol and 0.01 M sodium dodecyl sulfate, with a pH of 3.3 achieved by adding orthophosphoric acid. The ratio of methanol to sodium dodecyl sulfate in the mobile phase was 70:30 (v/v). The flow rate of the mobile phase was established at a rate of 1.5 mL/min. The peaks found and recorded are resolved at a wavelength of 215 nm. The three analytes under investigation were successfully separated and assessed using the recommended protocols. Both methods were validated following the International Council for Harmonization (ICH) recommendations for assessing linearity, range, accuracy, precision, specificity, and robustness. Moreover, the environmental sustainability of the advanced methodologies The assessment has been performed using various instruments, such as the Analytical Eco-Scale, NEMI, GAPI, and AGREE. The utilization of these tools was implemented in order to perform a comprehensive assessment of the environmental sustainability of the methods, as well as to establish a comparison with previously documented approaches. This study was carried out to evaluate the potential environmental implications of the suggested methods and to determine their suitability for concurrent analysis of the examined pharmaceuticals in formula and quality control units.</p></div>\",\"PeriodicalId\":496,\"journal\":{\"name\":\"BMC Chemistry\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773764/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13065-025-01385-6\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-025-01385-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在减轻全球环境污染的背景下,绿色分析化学的研究已经引起了极大的关注。在这项研究中,我们提出了两种环境友好的色谱方法,可以同时和特异性地测定沙格列汀(SAX)、二甲双胍(MET)和MET的药典杂质三聚氰胺(MEL)。本研究的初始方法是高效薄层色谱法(HPTLC),采用60 F 254硅胶包覆的Mark HPTLC板在铝板上作为固定相。显影体系由乙酸乙酯:甲醇:氨:冰醋酸按6:4:1:3 .3 (v/v/v/v)的比例组成。分析波长为215 nm。本研究采用的第二种方法是超高效液相色谱(UPLC)。该方法采用C18色谱柱进行分离。流动相为甲醇与0.01 M十二烷基硫酸钠的混合物,加入正磷酸,pH为3.3。流动相中甲醇与十二烷基硫酸钠的比例为70:30 (v/v)。流动相流速为1.5 mL/min。所发现和记录的峰在215nm波长处被分辨。所调查的三种分析物成功分离并使用推荐的方案进行评估。两种方法均按照国际统一委员会(ICH)关于评估线性、范围、准确度、精密度、特异性和稳健性的建议进行验证。此外,先进方法的环境可持续性已经使用各种工具进行了评估,如分析生态尺度、NEMI、GAPI和AGREE。利用这些工具是为了对这些方法的环境可持续性进行全面评估,并与以前记录的方法进行比较。本研究的目的是评估建议的方法对环境的潜在影响,并确定其在配方和质量控制单元中同时分析被检药物的适用性。
Sequential separation of anti-diabetic drugs in the presence of melamine as impurity using chromatographic methods
The study of green analytical chemistry has garnered significant attention in the context of mitigating global environmental contamination. In this study, we present two methodologies for environmentally friendly chromatography that enable simultaneous and specific determination of Saxagliptin (SAX), metformin (MET), and a pharmacopoeial impurity of MET known as melamine (MEL). The initial method employed in this study is High-Performance Thin Layer Chromatography (HPTLC), which utilized 60 F 254 silica gel-coated Mark HPTLC plates on aluminum sheets as the stationary phase. The developing system was made up of a mix of ethyl acetate: methanol: ammonia: glacial acetic acid in a ratio of 6:4:1:0.3 (v/v/v/v). The analysis was performed at a wavelength of 215 nm. The second method employed in this study is ultra-performance liquid chromatography (UPLC). In this method, a C18 column was utilized for the separation process. The mobile phase was made up of a mix of methanol and 0.01 M sodium dodecyl sulfate, with a pH of 3.3 achieved by adding orthophosphoric acid. The ratio of methanol to sodium dodecyl sulfate in the mobile phase was 70:30 (v/v). The flow rate of the mobile phase was established at a rate of 1.5 mL/min. The peaks found and recorded are resolved at a wavelength of 215 nm. The three analytes under investigation were successfully separated and assessed using the recommended protocols. Both methods were validated following the International Council for Harmonization (ICH) recommendations for assessing linearity, range, accuracy, precision, specificity, and robustness. Moreover, the environmental sustainability of the advanced methodologies The assessment has been performed using various instruments, such as the Analytical Eco-Scale, NEMI, GAPI, and AGREE. The utilization of these tools was implemented in order to perform a comprehensive assessment of the environmental sustainability of the methods, as well as to establish a comparison with previously documented approaches. This study was carried out to evaluate the potential environmental implications of the suggested methods and to determine their suitability for concurrent analysis of the examined pharmaceuticals in formula and quality control units.
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.