甘草次酸抗腺性膀胱炎作用:生物信息学分析及分子验证。

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED
Haiwei Hu, Yongbo Tang, Baotong Zhou, Shuangyan Chen, Jimin Su, Wei Zhong, Yuanyang Wei, Yipeng Huang, Bo Ge
{"title":"甘草次酸抗腺性膀胱炎作用:生物信息学分析及分子验证。","authors":"Haiwei Hu, Yongbo Tang, Baotong Zhou, Shuangyan Chen, Jimin Su, Wei Zhong, Yuanyang Wei, Yipeng Huang, Bo Ge","doi":"10.1007/s11030-025-11105-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cystitis glandularis (CG) is a chronic hyperplastic disorder of the bladder, and the available clinical drug therapy is insufficient currently. Glycyrrhetinic acid (GA), a bioactive compound extracted from the roots of Glycyrrhiza glabra, is found with beneficial actions, including anti-inflammatory and anti-oxidative effects. We previously reported that GA relieves CG symptoms in animal model, implying the potential application of GA to treat CG. However, the action mechanisms of GA against CG remain unclear. In this study, we aimed to identify the pivotal targets and therapeutic effects of GA through integrated bioinformatics analysis and experimental validation. Integrated bioinformatics analysis screened eleven potential therapeutic targets for GA against CG, and seven pivotal targets were identified subsequently. Enrichment gene analysis revealed GA exhibiting biological activities against CG via regulating multiple pharmacological targets and molecular pathways associated with inflammatory reaction and oxidative stress. Molecular docking computation revealed potent affinity and interaction between GA and prostaglandin-endoperoxide synthase 2 (PTGS2) and mucin 1 (MUC1) proteins in CG. To validate biochemically, increased mRNA and protein expressions of PTGS2 and MUC1 were observed in human CG samples. Compared to CG mice, GA-treated CG mice exhibited reduced inflammatory cytokine contents and downregulated PTGS2 and MUC1 mRNA and protein levels. These integrated findings suggest the potential therapeutic effects of GA against CG via the regulation of targeting genes and pathways. However, further studies are necessary to perform and facilitate the clinical application of GA for treating CG.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-cystitis glandularis action exerted by glycyrrhetinic acid: bioinformatics analysis and molecular validation.\",\"authors\":\"Haiwei Hu, Yongbo Tang, Baotong Zhou, Shuangyan Chen, Jimin Su, Wei Zhong, Yuanyang Wei, Yipeng Huang, Bo Ge\",\"doi\":\"10.1007/s11030-025-11105-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cystitis glandularis (CG) is a chronic hyperplastic disorder of the bladder, and the available clinical drug therapy is insufficient currently. Glycyrrhetinic acid (GA), a bioactive compound extracted from the roots of Glycyrrhiza glabra, is found with beneficial actions, including anti-inflammatory and anti-oxidative effects. We previously reported that GA relieves CG symptoms in animal model, implying the potential application of GA to treat CG. However, the action mechanisms of GA against CG remain unclear. In this study, we aimed to identify the pivotal targets and therapeutic effects of GA through integrated bioinformatics analysis and experimental validation. Integrated bioinformatics analysis screened eleven potential therapeutic targets for GA against CG, and seven pivotal targets were identified subsequently. Enrichment gene analysis revealed GA exhibiting biological activities against CG via regulating multiple pharmacological targets and molecular pathways associated with inflammatory reaction and oxidative stress. Molecular docking computation revealed potent affinity and interaction between GA and prostaglandin-endoperoxide synthase 2 (PTGS2) and mucin 1 (MUC1) proteins in CG. To validate biochemically, increased mRNA and protein expressions of PTGS2 and MUC1 were observed in human CG samples. Compared to CG mice, GA-treated CG mice exhibited reduced inflammatory cytokine contents and downregulated PTGS2 and MUC1 mRNA and protein levels. These integrated findings suggest the potential therapeutic effects of GA against CG via the regulation of targeting genes and pathways. However, further studies are necessary to perform and facilitate the clinical application of GA for treating CG.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-025-11105-w\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11105-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

腺性膀胱炎(Cystitis glandularis, CG)是一种慢性膀胱增生性疾病,目前临床可用的药物治疗不足。甘草次酸(GA)是一种从甘草根中提取的生物活性化合物,具有抗炎和抗氧化等有益作用。我们之前报道了GA在动物模型中缓解CG症状,这意味着GA在治疗CG方面有潜在的应用前景。然而,GA对CG的作用机制尚不清楚。在本研究中,我们旨在通过综合生物信息学分析和实验验证来确定GA的关键靶点和治疗效果。综合生物信息学分析筛选了11个GA抗CG的潜在治疗靶点,并确定了7个关键靶点。富集基因分析表明,GA通过调节炎症反应和氧化应激相关的多种药理靶点和分子途径,具有抗CG的生物活性。分子对接计算显示,GA与CG中前列腺素内过氧化物合成酶2 (PTGS2)和粘蛋白1 (MUC1)蛋白具有很强的亲和力和相互作用。为了进行生化验证,在人CG样品中观察到PTGS2和MUC1的mRNA和蛋白表达增加。与CG小鼠相比,ga处理的CG小鼠炎症细胞因子含量降低,PTGS2和MUC1 mRNA和蛋白水平下调。这些综合研究结果表明,GA通过调节靶向基因和途径对CG有潜在的治疗作用。然而,需要进一步的研究来执行和促进GA治疗CG的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anti-cystitis glandularis action exerted by glycyrrhetinic acid: bioinformatics analysis and molecular validation.

Cystitis glandularis (CG) is a chronic hyperplastic disorder of the bladder, and the available clinical drug therapy is insufficient currently. Glycyrrhetinic acid (GA), a bioactive compound extracted from the roots of Glycyrrhiza glabra, is found with beneficial actions, including anti-inflammatory and anti-oxidative effects. We previously reported that GA relieves CG symptoms in animal model, implying the potential application of GA to treat CG. However, the action mechanisms of GA against CG remain unclear. In this study, we aimed to identify the pivotal targets and therapeutic effects of GA through integrated bioinformatics analysis and experimental validation. Integrated bioinformatics analysis screened eleven potential therapeutic targets for GA against CG, and seven pivotal targets were identified subsequently. Enrichment gene analysis revealed GA exhibiting biological activities against CG via regulating multiple pharmacological targets and molecular pathways associated with inflammatory reaction and oxidative stress. Molecular docking computation revealed potent affinity and interaction between GA and prostaglandin-endoperoxide synthase 2 (PTGS2) and mucin 1 (MUC1) proteins in CG. To validate biochemically, increased mRNA and protein expressions of PTGS2 and MUC1 were observed in human CG samples. Compared to CG mice, GA-treated CG mice exhibited reduced inflammatory cytokine contents and downregulated PTGS2 and MUC1 mRNA and protein levels. These integrated findings suggest the potential therapeutic effects of GA against CG via the regulation of targeting genes and pathways. However, further studies are necessary to perform and facilitate the clinical application of GA for treating CG.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信