{"title":"Quantifying the sources and health risks of groundwater nitrate via dual NO isotopes and Monte Carlo simulations in a developed planting-breeding area.","authors":"Jianwei Liu, Shuo Qiao, Shilong Zhao, Hui Chen, Yong Wu, Donghao Li, Ping Liu, Ling Li","doi":"10.1016/j.ecoenv.2025.117778","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrate (NO<sub>3</sub><sup>-</sup>) pollution in groundwater is a worldwide environmental issue, particularly in developed planting-breeding areas where there is a substantial presence of nitrogen-related sources. Here, we explored the key sources and potential health risks of NO<sub>3</sub><sup>-</sup> in a typical planting-breeding area in the North China Plain based on dual stable isotopes and Monte Carlo simulations. The analysis results revealed that the NO<sub>3</sub><sup>-</sup> concentration ranged from 0.02 to 44.6 mg/L, with a mean value of 7.54 mg/L, along with a significant spatial variability. Analysis by combining stable isotopes (δ<sup>15</sup>N-NO<sub>3</sub><sup>-</sup> and δ<sup>18</sup>O-NO<sub>3</sub><sup>-</sup>) with the Bayesian isotope mixing model (MixSIAR) revealed that soil N (60.3 %) and manure and sewage (35.9 %) contributed the most NO<sub>3</sub><sup>-</sup> in groundwater, followed by chemical N fertilizer (2.9 %) and atmospheric N deposition (0.8 %). However, the contribution of N fertilizer may be underestimated because it has undergone a long-term applied history and have progressively accumulated in the soil, and then promoted the entry of groundwater under frequent rainfall and irrigation practices. From the probabilistic health risk assessment, a relatively low probability of exceeding the threshold (HI=1) was observed (0.2 % for adults and 2.59 % for children); nevertheless, children still face some nonnegligible risk, particularly for the oral ingestion of drinking water at high-pollution sites. Therefore, we highlight the importance of effective management of manure and sewage from breeding plants and reduction of chemical N fertilizer usage are suggested in developed agricultural areas.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"290 ","pages":"117778"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.ecoenv.2025.117778","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Quantifying the sources and health risks of groundwater nitrate via dual NO isotopes and Monte Carlo simulations in a developed planting-breeding area.
Nitrate (NO3-) pollution in groundwater is a worldwide environmental issue, particularly in developed planting-breeding areas where there is a substantial presence of nitrogen-related sources. Here, we explored the key sources and potential health risks of NO3- in a typical planting-breeding area in the North China Plain based on dual stable isotopes and Monte Carlo simulations. The analysis results revealed that the NO3- concentration ranged from 0.02 to 44.6 mg/L, with a mean value of 7.54 mg/L, along with a significant spatial variability. Analysis by combining stable isotopes (δ15N-NO3- and δ18O-NO3-) with the Bayesian isotope mixing model (MixSIAR) revealed that soil N (60.3 %) and manure and sewage (35.9 %) contributed the most NO3- in groundwater, followed by chemical N fertilizer (2.9 %) and atmospheric N deposition (0.8 %). However, the contribution of N fertilizer may be underestimated because it has undergone a long-term applied history and have progressively accumulated in the soil, and then promoted the entry of groundwater under frequent rainfall and irrigation practices. From the probabilistic health risk assessment, a relatively low probability of exceeding the threshold (HI=1) was observed (0.2 % for adults and 2.59 % for children); nevertheless, children still face some nonnegligible risk, particularly for the oral ingestion of drinking water at high-pollution sites. Therefore, we highlight the importance of effective management of manure and sewage from breeding plants and reduction of chemical N fertilizer usage are suggested in developed agricultural areas.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.